Rietveld refinement application for the identification of ZnO phases obtained by chemical precipitation

Keywords: x-Ray Diffraction (XRD), Rietveld Refinement, Wurtzite (ZnO), Halite (ZnO), Smithsonite (ZnCO3), Zinc Acetate (ZnC4H6O4)

Abstract

Zinc oxide (ZnO) is a type II-VI semiconductor material, which has a band gap energy (Ebp) of 3.37 eV at 298.15 K, and the most thermodynamically stable crystalline structure is that of wurtzite type. With these characteristics, ZnO is an excellent candidate for multiple industrial applications such as; electronics, magnetic, photocatalytic, optoelectronics, metallurgical, food, cosmetic, pharmacological, ceramic, polymeric and many others. In the present work, the crystalline phases present in solid samples obtained by chemical precipitation were identified and quantified considering the stoichiometric relationship in an alkaline médium. Fort he analysis of the crystalline phases present in the solids obtained, the X-ray Diffraction (XRD) technique was used, the diffractograms were obtained in rangue of 4 to 90 of 2θ, at a passing speed of 0.02 and the Application of the Rietveld Refinement method was carried out Using the Materials Using Diffraction Analysis (MAUD) software. The qualitative results allowed to consider the predominant presence of wurtzite phase (ZnO), smithsonite (ZnCO3) and zinc acetate (ZnC4H6O4). The refinement results allowed to identify the presence of secondary ZnO phases in these solids, such as the salt rock structure (halite) and the zinc blende.

Downloads

Download data is not yet available.

References

American Chemical Society. (2014). Zinc Oxide. Molecule of the week archive, 1.

Askeland, D. R. (2018). Ciencía e ingeniería de materiales. México : CENGAGE Learning.

Brown, T. (2014). Química la ciencia central . México : Pearson.

Carl H. Bates, W. B. (1967). New High-Pressure Polymorph Of Zinc Oxide. Science, 137, 993.

Castellan, G. W. (1988). Fisicoquímica. México: Fondo educativo interamericano.

Cláudia T. Kniess, J. C. (2012). The quantification of crystalline phases in materials: Aplications of Rietveld Method. INTECH.

George, W. (2006). Powder Diffraction: The Rietveld Method and Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data. Berlin: Springer Science.

Heidrun Sowa, H. A. (2006). High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. Journal of applied Crystallography, 39, 169-175.

J. Choisnntet, A. D. (1966). Substitution du zinc par le cadmium dans le spinelle Zn~2~ Sn O~4~. Etude de la repartition des cations dans la solution solide Zn~2-2x~ Cd~2x~ Sn O~4~. Sciences Chimiques, 266, 543-545.

Jamal Kizmi, P. C. (2020). Bi-doping improves the magnetic properties of zinc oxide nanowires. ROYAL SOCIETY OF CHEMISTRY, 23297-23311.

Özgür Ü., A. Y. (2005). J. Apply. Phys.

Pushpendra Singh, R. K. (2021). Journey of ZnO quantum dots from undoped to rare-eart and transition metal-doped and their applications. ROYAL SOCIETY OF CHEMISTRY, 2512-2545.

S. Koch, S. S. (2015). Air bubble promoted large scale synthesis of luminescent ZnO nanoparticles. Dublin: Royal Society of Chemistry.

Susana Petrick Casagrande, R. C. (2014). Método de Rietveld para el estudio de estructuras cristalinas. Laboratorio de Datación, Facultad de Ciencias Universidad Nacional de Ingeniería.

Published
2021-12-12
How to Cite
Landeros-Velázquez, V. I., Herrera-Pérez, G., Vargas-Bernal, R., & Ramos-Ramírez, E. (2021). Rietveld refinement application for the identification of ZnO phases obtained by chemical precipitation. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 90-96. https://doi.org/10.29057/icbi.v9iEspecial2.8051