Coastal surface change detection by aerial image segmentation using convolutional neural networks

Keywords: Convolutional neural networks, Semantic segmentation, Time series, Protected coastal areas

Abstract

The conservation of ecosystems in coastal areas must be considered within a sustainable framework with anthropogenic activities. It is relevant to quantify the impact generated by external agents, hence the objective of this work is to implement a method for monitoring the degradation of the beach surface and adjacent coastal vegetation. Captures of aerial images of protected coastal areas have been collected, obtained periodically by means of a drone vehicle. A dataset was integrated that includes all seasonal phases and distinguishes 5 classes for monitoring: Mangrove (mangle), creeping vegetation (vegetación rastrera), sand (arena), sea (mar) and hill-plain (cerro-planicie). For semantic segmentation different convolutional neural network (CNN) architectures were implemented and compared using transfer learning. The results have been robust in the classification, reaching an overall accuracy of 93.9% and between 89.9-95.8% in individual classes. In the Intersection over Union, IoU metric, the range was between 86.6-92.7%. In change detection, time series are used for class monitoring. This method has been applied to the case study of Ensenada Grande beach in the Parque Nacional Archipiélago Espíritu Santo.

Downloads

Download data is not yet available.

References

A.Géron. (2019). Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. O’Reilly Media, pp. 450-478. https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Neural Networks and Deep Learning. https://doi.org/10.1007/978-3-319-94463-0

Bayr, U., & Puschmann, O. (2019). Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network. Ecological Informatics, 50, 220–233. https://doi.org/10.1016/j.ecoinf.2019.01.012

Casella, E., Rovere, A., Pedroncini, A., Stark, C. P., Casella, M., Ferrari, M., & Firpo, M. (2016). Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Marine Letters, 36(2), 151–163. https://doi.org/10.1007/S00367-016-0435-9

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. https://github.com/tensorflow/models/tree/master/

Computer Vision Toolbox - MATLAB & Simulink. (2020.). Retrieved May 9, 2022, from https://la.mathworks.com/products/computer-vision.html

Ellenson, A. N., Simmons, J. A., Wilson, G. W., Hesser, T. J., & Splinter, K. D. (2020). Beach State Recognition Using Argus Imagery and Convolutional Neural Networks. Remote Sensing 2020, Vol. 12, Page 3953, 12(23), 3953. https://doi.org/10.3390/RS12233953

Gonzalo-Martin, C., Garcia-Pedrero, A., Lillo-Saavedra, M., & Menasalvas, E. (2016). Deep learning for superpixel-based classification of remote sensing images. https://doi.org/10.3990/2.401

Google, C. (2014). Xception: Deep Learning with Depthwise Separable Convolutions. Computer Vision and Pattern Recognition, 1251–1258.

Guo, R., Liu, J., Li, N., Liu, S., Chen, F., Cheng, B., Duan, J., Li, X., & Ma, C. (2018). Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks. ISPRS International Journal of Geo-Information 2018, Vol. 7, Page 110, 7(3), 110. https://doi.org/10.3390/IJGI7030110

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. http://image-net.org/challenges/LSVRC/2015/

Jenčo, M., Fulajtár, E., Bobál’ová, H., Matečný, I., Saksa, M., Kožuch, M., Gallay, M., Kaňuk, J., Píš, V., & Oršulová, V. (2020). Mapping soil degradation on arable land with aerial photography and erosion models, case study from Danube Lowland, Slovakia. Remote Sensing, 12(24), 1–17. https://doi.org/10.3390/RS12244047

Pandey, P. C., Rani, M., Srivastava, P. K., Sharma, L. K., & Singh Nathawat, M. (2013). Land degradation severity assessment with sand encroachment in an ecologically fragile arid environment: a geospatial perspective. https://doi.org/10.5339/connect.2013.43

Rubio, V. G., Antonio, J., Ferrán, R., Manuel Menéndez García, J., Sánchez Almodóvar, N., María, J., Mayordomo, L., & Álvarez, F. (2019). Automatic Change Detection System over Unmanned Aerial Vehicle Video Sequences Based on Convolutional Neural Networks. https://doi.org/10.3390/s19204484

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.

The Mathworks, Inc. (2020). MATLAB (No. R2020b). la.mathworks.com/.

Valentini, N., & Balouin, Y. (2020). Assessment of a Smartphone-Based Camera System for Coastal Image Segmentation and Sargassum monitoring. Journal of Marine Science and Engineering 2020, Vol. 8, Page 23, 8(1), 23. https://doi.org/10.3390/JMSE8010023

Wagner, F. H., Sanchez, A., Tarabalka, Y., Lotte, R. G., Ferreira, M. P., Aidar, M. P. M., Gloor, E., Phillips, O. L., & Aragão, L. E. O. C. (2019). Using the U‐net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote Sensing in Ecology and Conservation, 5(4), 360–375. https://doi.org/10.1002/rse2.111

Yoo, C. I., & Oh, T. S. (2016). Beach volume change using UAV photogrammetry Songjung beach, Korea. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41, 1201–1205. https://doi.org/10.5194/ISPRSARCHIVES-XLI-B8-1201-2016

Younis, M. C., & Keedwell, E. (2019). Semantic segmentation on small datasets of satellite images using convolutional neural networks. Journal of Applied Remote Sensing,

Published
2022-10-05
How to Cite
Padilla-Arballo, J. J., Martínez-Díaz, S., Castro-Liera, M. A., & Luna-Taylor, J. E. (2022). Coastal surface change detection by aerial image segmentation using convolutional neural networks. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial4), 136-144. https://doi.org/10.29057/icbi.v10iEspecial4.9290