Physical chemistry characterization by XRD and SEM-EDS of synthetic zeolite commercial 13X-HP.

Keywords: Zeolite, Faujasite, Cation, 13X

Abstract

The commercial synthetic zeolite 13X-HP, which is marketed as a molecular sieve for application in oxygen concentrators. According to the table of use, the purity of this material is greater than 90%, so X-ray diffraction was carried out to corroborate this value. In the same way, the number "13" in the name is an indication that the exchangeable cation present is sodium (Na). To corroborate this result, the SEM-EDS characterization was carried out for an elemental scan of the zeolite; Taking advantage of the technique, the morphology of the crystals was reviewed to be able to correlate them with the XRD results and thus corroborate the presence of the Faujasite-type structure.

Downloads

Download data is not yet available.

References

Asghari, M., Mosadegh, M., & Riasat Harami, H. (2018). Supported PEBA-zeolite 13X nano-composite membranes for gas separation: Preparation, characterization and molecular dynamics simulation. Chemical Engineering Science, 187, 67–78. https://doi.org/10.1016/j.ces.2018.04.067

Chen, C., Park, D. W., & Ahn, W. S. (2014). CO 2 capture using zeolite 13X prepared from bentonite. Applied Surface Science, 292, 63–67. https://doi.org/10.1016/j.apsusc.2013.11.064

Cortés, F. (2009). Adsorción de agua en materiales compuestos y en Zeolita. 116.

Garshasbi, V., Jahangiri, M., & Anbia, M. (2017). Equilibrium CO 2 adsorption on zeolite 13X prepared from natural clays. Applied Surface Science, 393, 225–233. https://doi.org/10.1016/j.apsusc.2016.09.161

IZA. (2020). Database of Zeolite Structures (IZA-SC). http://www.iza-structure.org/databases/

Jovi, N. (2011). Electrocatalytic behavior of nickel impregnated zeolite electrode. 6. https://doi.org/10.1016/j.ijhydene.2011.07.097

Lakhera, S. K., Sree, H. A., & Suman, S. (2015). Synthesis and characterization of 13x zeolite/ activated carbon composite. International Journal of ChemTech Research, 7(3), 1364–1368.

Ma, Y., Yan, C., Alshameri, A., Qiu, X., Zhou, C., & Li, D. (2014). Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Advanced Powder Technology, 25(2), 495–499. https://doi.org/10.1016/j.apt.2013.08.002

Majid, Z., AbdulRazak, A. A., & Noori, W. A. H. (2019). Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal. Arabian Journal for Science and Engineering, 44(6), 5457–5474. https://doi.org/10.1007/s13369-019-03788-9

Margeta, K., & Farkaš, A. (2019). Zeolites - New Challenges. In Zeolites - New Challenges. https://doi.org/10.5772/intechopen.77482

McCusker, L. B., Olson, D. H., & Baerlocher, C. (2007). Atlas of Zeolite Framework Types. In Atlas of Zeolite Framework Types. https://doi.org/10.1016/B978-0-444-53064-6.X5186-X

Mondragon, F., Rincon, F., Sierra, L., Escobar, J., Ramirez, J., & Fernandez, J. (1990). New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel, 69(2), 263–266. https://doi.org/10.1016/0016-2361(90)90187-U

Storch, G., Reichenauer, G., Scheffler, F., & Hauer, A. (2008). Hydrothermal stability of pelletized zeolite 13X for energy storage applications. Adsorption, 14(2–3), 275–281. https://doi.org/10.1007/s10450-007-9092-7

Undy, C. S. C. (1998). MICROWAVE TECHNIQUES IN THE SYNTHESIS AND MODIFICATION OF ZEOLITE CATALYSTS. 63, 1699–1723.

Wajima, T., & Ikegami, Y. (2009). Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion. Ceramics International, 35(7), 2983–2986. https://doi.org/10.1016/j.ceramint.2009.03.014

Wei, L., Haije, W., Kumar, N., Peltonen, J., Peurla, M., Grenman, H., & Jong, W. De. (2020). In fl uence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO 2 methanation. Catalysis Today, May, 0–1. https://doi.org/10.1016/j.cattod.2020.05.025

Wei, L., Kumar, N., Haije, W., Peltonen, J., Peurla, M., Grénman, H., & Jong, W. De. (2020). Can bi-functional nickel modi fi ed 13X and 5A zeolite catalysts for CO 2 methanation be improved by introducing ruthenium ? Molecular Catalysis, 494(July), 111115. https://doi.org/10.1016/j.mcat.2020.111115

Yang, R. T. (2003). Zeolites and Molecular Sieves. In Adsorbents: Fundamentals and Applications (Vol. 1862, pp. 157–190). https://doi.org/10.1002/047144409x.ch7

Zhu, L., Lv, X., Tong, S., Zhang, T., Song, Y., & Wang, Y. (2019). Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas. Journal of Natural Gas Science and Engineering, 69(February), 102941. https://doi.org/10.1016/j.jngse.2019.102941

Published
2021-12-12
How to Cite
Morales-García, P., Cardoso-Legorreta, E., Samaniego-Benítez, J. E., Legorreta-García, F., & Perez-Labra, M. (2021). Physical chemistry characterization by XRD and SEM-EDS of synthetic zeolite commercial 13X-HP. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 57-61. https://doi.org/10.29057/icbi.v9iEspecial2.8026

Most read articles by the same author(s)

1 2 3 > >>