Diffusion in solids

Keywords: Borurization, iron boride, kinetics, activation energy, mathematical diffusion modeling

Abstract

The study investigated the use of a mixture of powders containing 33.5 wt.% B4C, 5.4 wt.% KBF4, and 61.1 wt.% SiC to treat the ASTM A681 steel. The traditional powder-pack technique treated the steel at a temperature range of 1123-1273 K for 2, 4, 6, and 8 hours. Scanning electron microscopy (SEM) revealed a sawn interface morphology for the borided layers. X-ray diffraction (XRD) analysis confirmed the presence of the Fe2B phase. Five mathematical approaches were proposed to evaluate the phase's boron diffusivities and activation energies. The results were compared with previous studies to ensure their accuracy and reliability. The study also conducted pin-on-disc tests to determine the friction coefficients before and after treatment. A CSM instrument (tribometer) was used under dry sliding conditions for the testing, which confirmed the beneficial effect of boronizing on wear resistance. The models were empirically validated for two additional processing conditions (1223 K for 3 hours and 1273 K for 1.5 hours), and the predicted layer thicknesses matched the experimental values. Overall, the study demonstrated the potential of the powder-pack technique with the mixture above of powders for treating ASTM A681 steel. The methodology and results presented in the study provide valuable insights into the boronizing process and can be helpful for researchers and practitioners in surface engineering.

Downloads

Download data is not yet available.

References

Arslan–Kaba, M., Karimzadehkhoei, M. Keddam, M., Timur, S., Sireli, G. K. (2023). An Experimental and Modelling Study on Pulse Current Integrated CRTD–Bor Process, Materials Chemistry and Physics, 302, 1–9.

ASTM E3–11, (2017). Standard Guide for Preparation of Metallographic Specimens. American Society for Metals: Russell, OH, USA.

Biddulph, R.H. (1977). Boronising for erosion resistance. Thin Solid Films, 45, 341–347.

Bouarour, B., Keddam, M., Boumaai, B. (2022). Growth kinetics of diiron boride (Fe2B) layer on a carbon steel by four approaches. Sciendo, 66, 1–6.

Brakman, C., Gommers, A., Mittemeijer, E. (1989). Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics. Journal of Materials Research. 4, 1354–1370.

Campos–Silva, I., Ortiz–Domínguez, M., VillaVelázquez, C., Escobar, R., López, N. (2007) Growth kinetics of boride layers: a modified approach. Defect and Diffusion Forum, 272, 79–86.

Campos, I., Islas, M., González, E., Ponce, P., Ramírez, G. (2006). Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing. Surface and Coatings Technology, 201, 2717–2723.

Campos, I., Oseguera, J., Figueroa, U., Garcı́a, J. A., Bautista, O., Kelemenis, G. (2003). Kinetic study of boron diffusion in the paste-boriding process. Materials Science and Engineering: A, 352, 261–265.

Campos-Silva, I., Ortiz-Domínguez, M., Keddam, M., López-Perrusquia, N., Carmona-Vargas, A., Elías-Espinosa, M. (2009). Kinetics of the formation of Fe2B layers in gray cast iron: Effects of boron concentration and boride incubation time. Applied Surface Science, 255, 9290–9295.

Campos-Silva, I., Ortiz-Domínguez, M., Cimenoglu, H., Escobar-Galindo, R., Keddam, M., Elías-Espinosa, M., López-Perrusquia, N. (2011). Diffusion model for growth of Fe2B layer in pure iron. Surface Engineering, 27, 189–195.

Campos-Silva, I., López-Perrusquia, N., Ortiz-Domínguez, M., Figueroa-López, U., Gómez-Vargas, O.A., Meneses-Amador, A., Rodríguez-Castro, G. (2009). Characterization of boride layers formed at the surface of gray cast irons. Kovove Materialy, 47, 75–81.

Campos-Silva, I., Franco-Raudales, O., Meda-Campana, J. A., Espino-Cortés, F. P., Acosta-Pavon, J. C. (2019). Growth kinetics of CoB–Co2B layers using the powder-pack boriding process assisted by a direct current field. High Temperature Materials and Processes, 38, 158–167.

Campos-Silva, I., Hernández-Ramírez, E. J., Contreras-Hernández, A., Rosales-López, J. L., Valdez-Zayas, E., Mejía-Caballero, I., Martínez-Trinidad, J. (2021). Pulsed-DC powder-pack boriding: Growth kinetics of boride layers on an AISI 316 L stainless steel and Inconel 718 superalloy. Surface and Coatings Technology, 421, 1–12.

Chatterjee-Fischer, R. (1989). Boriding and Diffusion Metallizing. In Surface Modification Technologies; Sudarsan, T.S., Ed.; Marcel Dekker Inc.: New York, NY, USA.

Crank, J. (1975). The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Bristol, England, pp. 1–421.

Darnley, P. A., Bell, T. (1985). Engineering the surface with boron based materials. Surface Engineering, 1, 203–217.

Davis, J. R. (2002). Bonding. Surface Hardening of Steels - Understanding the Basics, 1st ed.; ASM International: Ohio, USA, pp. 1–349.

Elias-Espinosa, M., Ortiz-Domínguez, M., Keddam, M., Gómez-Vargas, O.A., Arenas-Flores, A., Barrientos-Hernández, F.R., West, A.R., Sinclair, D.C. (2015). Boriding kinetics and mechanical behaviour of AISI O1 steel. Surface Engineering, 31, 588–597.

Elias-Espinosa, M., Ortiz-Domínguez, M., Keddam, M., Flores-Rentería, M. A., Damián-Mejía, O., Zuno-Silva, J., Hernández-Ávila, J., Cardoso-Legorreta, E., Arenas-Flores, A. (2014). Growth Kinetics of the Fe2B Layers and Adhesion on Armco Iron Substrate. Journal of Materials Engineering and Performance, 23, 2943–2952.

Fichtl, W. (1981). Boronizing and its practical applications. Materials in engineering, 2, 276–286.

Flores-Rentería, M.A., Ortiz-Domínguez, M., Keddam, M., Damián-Mejía, O., Elias-Espinosa, M., Flores-González, M.A., Medina-Moreno, S.A., Cruz-Avilés, A., Villanueva-Ibañez, M. (2015). A Simple Kinetic Model for the Growth of Fe2B Layers on AISI 1026 Steel During the Powder-pack Boriding. High Temperature Materials and Processes, 34, 1–11.

Flores-Rentería, M.A., Ortiz-Domínguez, M., Keddam, M., Damián-Mejía, O., Elias-Espinosa, M., Flores-González M.A., Medina-Moreno, S.A., Cruz-Avilés, A., Villanueva-Ibañez, M. (2015). Simple kinetic model for the growth of Fe2B layers on AISI 1026 steel during the powder-pack boriding. High Temperature Materials and Processes, 31, 1–11.

Glicksman, M.E. (2000). Diffusion in Solids: Field Theory, Solid–State Principles, and Applications, 1st ed.; Jon Wiley & Sons: New York, NY, USA, pp. 1–472.

Goodman, T.R. (1958). The Heat-Balance Integral and Its Application to Problems Involving a Change of Phase. Trans. ASME, 80, 335–342.

Graf von Matuschka, A. (1980). Boronizing, 1st ed.; Carl Hanser Verlag: München, Germany, pp. 1–97.

Gunes, I., Ulker, S., Taktak, S. (2013). Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures. Protection of Metals and Physical Chemistry of Surfaces. 49, 567–573.

Jain, V., Sundararajan, G. (2017). Influence of the pack thickness of the boronizing mixture on the boriding of steel. Surface and Coatings Technology, 149, 21–26.

Kayali, Y., Kara, R. (2021). Investigation of wear behavior and diffusion kinetic values of boronized Hardox-450 steel. Protection of Metals and Physical Chemistry of Surfaces, 57, 1025–1033.

Kartal, G., S. Timur, S., Sista, V., Eryilmaz, O. L., Erdemir, A. (2011). The growth of single Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding (PHEB). Surface and Coatings Technology, 206, 2005–2011.

Keddam, M., Ortiz-Domínguez, M., Cruz-Avilés, A., Morgado-González, I., Gómez-Vargas, O.A., Cardoso-Legorreta, E., Zuno-Silva, J. (2023). Kinetics of Formation, Metallurgical and Tribological Properties of Iron Boride Surface Layer on Steel ASTM A572. Metal Science and Heat Treatment, 65, 74–81.

Keddam, M., Ortiz-Domínguez, M., Campos-Silva, I., Martinez-Trinidad. J. (2010). A simple model for the growth kinetics of Fe2B iron boride on pure iron substrate. Applied Surface Science, 256, 3128–3132.

Keddam, M., Kulka, M. (2020). Simulation of boriding kinetics of AISI D2 steel using two different approaches. Metal Science and Heat Treatment, 61, 756–763.

Keddam, M., Kulka, M. (2020). Mean Diffusion Coefficient Method in Studying Armco Iron Boriding Kinetics. Metal Science and Heat Treatment, 62, 326–330.

Krukovich, M.G., Prusakov, B.A., Sizov, I.G. (2016). The components and phases of systems “Boron-Iron” and “Boron-Carbon-Iron”. In: Plasticity of Boronized Layers. 1st ed.; Springer: Cham, Switzerland, Volume 237, pp. 13–21.

Kulka, M., Makuch, N., Piasecki, A. (2017). Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surface and Coatings Technology, 325, 515–532.

Kulka, M. (2019). Trends in thermochemical techniques of boriding, in: Current Trends in Boriding, 1st ed.; Springer: Cham, Switzerland, pp. 1–281

Makuch, N., Dziarski, P. (2021). Importance of trimethyl borate temperature used during gas boriding for microstructure, nanomechanical properties and residual stresses distribution on the cross-section of the produced layer. Surface and Coatings Technology, 405, 1–11.

Makuch, N., Kulka, M., Keddam, M., Piasecki, A. (2023). Growth Kinetics, Microstructure Evolution, and Some Mechanical Properties of Boride Layers Produced on X165CrV12 Tool Steel. Materials, 16, 1–28.

Martini, C., Palombarini, G., Carbucicchio, M. (2004). Mechanism of thermochemical growth of iron borides on iron. Journal of Materials Science, 39, 933–937.

Mann, B.S. (1997). Boronizing of cast martensitic chromium nickel stainless steel and its abrasion and cavitation-erosion behaviour. Wear, 208 125–131.

Morgado–González, I., Ortiz–Dominguez, M., Keddam, M. (2022). Characterization of Fe2B layers on ASTM A1011 steel and modeling of boron diffusion. Materials Testing, 64, 55– 66.

Okamoto, H. (2004). B-Fe (boron-iron). Journal of Phase Equilibria and Diffusion, 25, 297–298.

Orihel, P., Drienovský, M., Gabalcová, Z., Jurˇci, P., Keddam, M. (2023). Characterization and Boron Diffusion Kinetics on the Surface-Hardened Layers of Royalloy Steel. Coatings, 13, 1–16.

Ortiz Domínguez, M. (2015). Evaluación de la movilidad del boro en un hierro puro ARMCO endurecido a través del proceso borurización base polvo. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 2, 1–30.

Ortiz-Domínguez, M., Cruz-Avilés, A., Morgado-González, I., José M. Farfán-García, J. M., Hernández-Pérez, J., Cruz-Bustamante, J. D. (2020) Tratamientos termoquímicos. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 7, 17–31.

Ortiz-Domínguez, M. (2019). Comparación de dos modelos de difusión para estudiar la cinética de crecimiento de las capas boruradas en un acero AISI 12L14. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 6, 1–14.

Ortiz–Domínguez, M., Campos–Silva, I., Hernández–Sánchez, E., Nava–Sánchez, J., Martínez–Trinidad, J., Jiménez–Reyes, M. Y., Damián–Mejía, O. (2011). Estimation of Fe2B growth on low-carbon steel based on two diffusion models. International Journal Materials Research, 102, 429–434.

Ortiz–Dominguez, M., Gomez–Vargas, O. A., Ares de Parga, G., Torres–Santiago, G., Velazquez–Mancilla, R., Castellanos–Escamilla, V. A., Mendoza–Camargo, J., Trujillo–Sanchez, R. (2019). Modeling of the Growth Kinetics of Boride Layers in Powder-Pack Borided ASTM A36 Steel Based on Two Different Approaches. Advances in Materials Science and Engineering, 2019, 1–12.

Ortiz-Domínguez, M., Gómez-Vargas, O.A., Keddam, M., Arenas-Flores, A., García-Serrano, J. (2017). Kinetics of boron diffusion and characterization of Fe2B layers on AISI 9840 steel. Protection of Metals and Physical Chemistry of Surfaces, 53, 534–547.

Ortiz-Domínguez, M., Gómez-Vargas, O.A., Barcenas-Castañeda, M., Castellanos-Escamilla, V.A. (2022). Comparison and Analysis of Diffusion Models: Growth Kinetics of Diiron Boride Layers on ASTM A283 Steel. Materials, 15, 8420.

Ortiz Domínguez, M. (2013). Contribución de la modelación matemática en el tratamiento termoquímico de borurización. PhD, National Polytechnic Institute (IPN), Ciudad de México-México, January 16.

Ortiz-Domínguez, M., Keddam, M., Elias-Espinosa, M., Ramírez-Cardona, M., Arenas-Flores, A., Zuno-Silva, J., Cervantes-Sodi, F., Cardoso-Legorreta, E. (2019). Characterization and boriding kinetics of AISI T1 steel. Metallurgical Research and Technology, 116, 1–11.

Ortiz-Domínguez, M., Keddam, M., Elias-Espinosa, M., Damián-Mejía, O., Flores-Rentería, M. A., Arenas-Flores, A., Hernández-Ávila, J. (2014). Investigation of boriding kinetics of AISI D2 steel. Surface Engineering, 30, 490–497.

Ortiz-Dominguez, M., Gomez-Vargas, O.A., Ares de Parga, G., Torres-Santiago, G., Velazquez-Mancilla, R., Castellanos-Escamilla, V.A., Mendoza-Camargo, J., Trujillo-Sanchez, R. (2019). Modeling of the Growth Kinetics of Boride Layers in Powder-Pack Borided ASTM A36 Steel Based on Two Different Approaches. Advances in Materials Science and Engineering, 2019, 1–12.

Ortiz Domínguez, M. (2013). Contribución de la modelación matemática en el tratamiento termoquímico de borurización. Ph.D. Thesis, National Polytechnic Institute (IPN), Ciudad de México, México, 16 January.

Ortiz-Dominguez, M., Keddam, M. (2024). Diffusion Kinetics and Characterization of Fe2B Coatings Grown Thermochemically on Steel ASTM A709. Metal Science and Heat Treatment, 65, 538–546.

Palombarini, G., Carbucicchio, M. (1984). On the morphology of thermochemically produced Fe2B/Fe interfaces. Journal of Materials Science Letters, 3, 791–794.

Palombarini, G., Carbucicchio, M. (1987). Growth of boride coatings on iron. Journal of Materials Science Letters, 6, 415–416.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007). Numerical Recipes in Pascal: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, NY, USA, pp. 1–1235.

Ramdan, R. D. (2010) Takaki, T.; Yashiro, K.; Tomita, Y. The Effects of Structure Orientation on the Growth of Fe2B Boride by Multi-Phase–Field Simulation. Materials Transactions, 51, 62–67.

Ratajski, J. (2004). Model of growth kinetics of nitrided layer in the binary Fe – N system. International Journal of Materials Research, 95, 823–828.

Ruiz-Trabolsi, P.A., Velázquez, J.C., Orozco-Álvarez, C., Carrera-Espinoza, R., Yescas-Hernández, J.A., González-Arévalo, N.E., Hernández-Sánchez, E. (2021). Kinetics of the Boride Layers Obtained on AISI 1018 Steel by Considering the Amount of Matter Involved. Coatings, 11, 1–17.

Selcuk, B., Ipek, R., Karamis, M.B., Kuzucu, V. (2000). An investigation on surface properties of treated low carbon and alloyed steels (boriding and carburizing). Journal of Materials Processing Technology, 103, 310–317.

Shewmon, P.G. (1989). Diffusion in Solids, 2nd ed.; MacGraww Hill Book Company: Warrendale, PA, USA, pp. 1–243.

Sikorski, K., Wierzchoń, T., Bieliński, P. (1998). X-ray microanalysis and properties of multicomponent plasma-borided layers on steels, Journal of Materials Science, 33, 811–815.

Smol'nikov, E. A., Sarmanova, L. M. (1982). Study of the possibility of liquid boriding of high-speed steels. Metal Science and Heat Treatment, 24, 785–788.

Türkmen, I., Yalamaç, E. (2021). Effect of Alternative Boronizing Mixtures on Boride Layer and Tribological Behaviour of Boronized SAE 1020 Steel. Metals and Materials International, 28, 1114–1128.

Türkmen, I., Yalamaç, E., Keddam, M. (2019). Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel. Surface and Coatings Technology, 377, 1–12.

Türkmen, I., Yalamaç, E. (2018). Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method. Journal of Alloys and Compounds, 744, 658–666.

Uslu, I., Comert, H., Ipek, M., Ozdemir, O., Bindal, C. (2007). Evaluation of borides formed on AISI P20 steel. Materials and Design, 28, 55–61.

Verein Deutscher Ingenieure Normen. (1991)., VDI 3198; VDI–Verlag Düsseldorf: Düsseldorf, Germany.

VillaVelázquez–Mendoza, C.I., Rodríguez-Mendoza, J.L., Ibarra–Galván, V., Hodgkins, R.P., López–Valdivieso, A., Serrato–Palacios, L.L., Leal-Cruz, A.L., Ibarra-Junquera, V. (2014). Effect of substrate roughness, time and temperature on the processing of iron boride coatings: experimental and statistical approaches. International Journal of Surface Science and Engineering, 8, 71–91.

Wood, A.S. (2001). A new look at the heat balance integral method. Applied Mathematical Modelling, 25, 815–824.

Wood, A.S. (2001). A new look at the heat balance integral method. Applied Mathematical Modelling, 22, 815–824.

Yu, L. G., Chen X. J., Khor K. A., Sundararajan, G. (2005). FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia, 53, 2361–2368.

Published
2024-07-05
How to Cite
Fernández De Dios, L. D., Ortiz Domínguez, M., Morales Robles, Ángel J., Cruz, A., Zuno Silva, J., & Gálvez López, E. (2024). Diffusion in solids. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 11(22), 1-27. https://doi.org/10.29057/escs.v11i22.12945