Electrical characterization of Bi0.5Na0.5TiO3 obtained by high-energy milling

Keywords: Bi0.5Na0.5TiO3, Piezoelectric, High-energy milling

Abstract

The bismuth sodium titanate (Bi0.5Na0.5TiO3) has gained attention recently due to its piezoelectric properties and lead-free composition. These attributes position it as a promising alternative to replace lead-based piezoelectric materials, known for their high environmental impact. This study delves into the electrical, dielectric, and structural characteristics of Bi0.5Na0.5TiO3 as a potential piezoelectric material. The Bi0.5Na0.5TiO3 was synthesized via high-energy milling followed by low-temperature sintering at 900°C. X-ray diffraction analysis confirms the formation of a single-phase Bi0.5Na0.5TiO3 compound with a rhombohedral structure. The dielectric properties display stable permittivity values (ranging from 465 to 419) at high frequencies, accompanied by minimal dielectric losses. Electric polarization curves reveal typical behavior of a hard ferroelectric material, featuring a notably high coercive field of 50 kV/cm and a saturation polarization of 25.7 µC/cm2.

Downloads

Download data is not yet available.

References

Chen J., Zhou C., Liu H., Li Q.,Yuan C., Xu J. (2023). Advances in mitigating the Td-d33 trade-off via compositionally graded diffusion in BNT-based piezoceramic. Journal of European Ceramic, 43, 1923-1931. DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.12.054

Dunce M., Birks E., Antonova M., Bikse L., Dutkevica S., Freimanis O., Livins M., Eglite L., Smits K., Sternberg A. (2021). Influence of sintering temperature on microstructure of Na0.5Bi0.5TiO3 ceramics. Journal of Alloys and Compounds, 884, 1-9. DOI: https://doi.org/10.1016/j.jallcom.2021.160955

Hao-Chen T., Qi, L., Mao-Hua, Z., Chunlin Z., Xiu, H. K. (2018). Defect suppression in CaZrO3-modified (K,Na)NbO3-based lead-free piezoceramic by sintering atmosphere control Journal of the American Ceramic Society,101(8), 1-24. DOI: https://doi.org/10.1111/jace.15488

Karlsson T., Forsgren C., Steenari B. M. (2018) Recovery of Antimony: A Laboratory Study on the Thermal Decomposition and Carbothermal Reduction of Sb (III), Bi (III), Zn (II) Oxides, and Antimony Compounds from Metal Oxide Varistors. Journal of Sustainable Metallurgy, 4, 194–204. DOI: https://doi.org/10.1007/s40831-017-0156-y

Madolappa S., Choudhary H. K., Punia N., Anupama A.V., Sahoo B. (2021). Dielectric properties of A-site Mn-doped bismuth sodium titanate perovskite: (Bi0·5Na0.5)0.9Mn0·1TiO3. Materials Chemistry and Physics, 270, 1-15. DOI: https://doi.org/10.1016/j.matchemphys.2021.124849

Muhammed K. R., Scrimshire, A., Sterianou I., Bell A. M. T., Bingham, P. A. (2020). Physical properties and sinterability of pure and iron-doped bismuth sodium titanate ceramics. Journal of the Australian Ceramic Society, 56(4), 1441–1449. DOI: https://doi.org/10.1007/s41779-020-00461-5

Mishra Y. K., Hofmann S., Thakur V. K. (2021). Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Advanced Science, 8(17), 1-9. DOI: https://doi.org/10.1002/advs.202100864

Marek J., Jüri P., Kristjan J., Mart V., Rainer T. (2015). The influence of high energy milling and sintering parameters on reactive sintered (Ti, Mo) C–Ni cermets. Journal of Alloys and Compounds, 636, 381-386. DOI: https://doi.org/10.1016/j.jallcom.2015.02.071

Maryam S., Malik A. U., Ashfaq A., Nasbah B. M., Umair M., Abdul R., Luo X., Khwaja M., Muhammad S., Young-Kwon P. (2021). Effect of high energy ball milling and low temperature densification of plate-like alumina powder. Powder Technology, 383, 84-92. DOI: https://doi.org/10.1016/j.powtec.2021.01.026

Roy R., Dutta A. (2023). Structural, optical, electrical, and dielectric relaxation properties of rare earth containing sodium bismuth titanate Na0.5Bi0.5TiO3 perovskite: Effect of ionic radius. Journal of Rare Earths, 1, 1-9. DOI: https://doi.org/10.1016/j.jre.2023.04.011

Wang J. R., Chen F., Zhao B., Li X., Qin L. (2017). Volatilization and transformation behavior of sodium species at high temperature and its influence on ash fusion temperatures. Fuel Process Technology,155, 209-215. DOI: https://doi.org/10.1016/j.fuproc.2016.06.009

Published
2024-07-05
How to Cite
Betancourt-Cantera, L. G., Bolarín-Miró, A. M., Sánchez-De-Jesús, F., Cortés-Escobedo, C. A., & Rosales-González, O. (2024). Electrical characterization of Bi0.5Na0.5TiO3 obtained by high-energy milling. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23), 82-85. https://doi.org/10.29057/icbi.v12i23.11740

Most read articles by the same author(s)