Comparisson between generalized geometric triangulation and odometry

Keywords: Pose, robot diferencial, odometría, triangulación geométrica generalizada, ArUco

Abstract

The localization in mobile robotics is essential for carrying out autonomous tasks. For this reason, different algorithms have been developed to estimate the robot's pose, either relatively or absolutely. One of the best known is Wheel-based Odometry, which is easy to implement but the error tends to increase with respect to time producing an unreliable estimation. In contrast, absolute localization algorithms such as Generalized Geometric Triangulation (GGT) offer higher accuracy, although their implementation may require more advanced measurement systems, and pose estimation can be slow. This work compares these two algorithms and shows what happens with the pose estimation when used for period of time. The presented results were obtained in a real testing area equipped with a Turtlebot3 model burger robot.

Downloads

Download data is not yet available.

References

Almeida, A. C., Neto, S. R., y Bianchi, R. A. (2018). Comparing vision-based monte-carlo localization methods. En 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pp. 437–442.

Campbell, S., O'Mahony, N., Carvalho, A., Krpalkova, L., Riordan, D., yWalsh, J. (2020). Where am i? localization techniques for mobile robots a review. En 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE). IEEE.

Cavanini, L., Cimini, G., Ferracuti, F., Freddi, A., Ippoliti, G., Monteri`u, A., y Verdini, F. (2017). A qr-code localization system for mobile robots: Application to smart wheelchairs. En 2017 European Conference on Mobile Robots (ECMR), pp. 1–6.

Esan, O., Du, S., y Lodewyk, B. (2020). Review on autonomous indoor wheel mobile robot navigation systems. En 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), pp. 1–6.

Esteves, J. S., Carvalho, A., y Couto, C. (2004). Generalized geometric triangulation algorithm for mobile robot absolute self-localization. En 2003 IEEE International Symposium on Industrial Electronics (Cat. No.03TH8692). IEEE.

Fauser, T., Bruder, S., y El-Osery, A. (2017). A comparison of inertial-based navigation algorithms for a low-cost indoor mobile robot. En 2017 12th International Conference on Computer Science and Education (ICCSE), pp. 101–106.

Housein, A. A., Xingyu, G., Li,W., y Huang, Y. (2022). Extended kalman filter sensor fusion in practice for mobile robot localization. International Journal of Advanced Computer Science and Applications, 13(2).

Kristalina, P., Pratiarso, A., Badriyah, T., y Putro, E. D. (2016). A wireless sensor networks localization using geometric triangulation scheme for object tracking in urban search and rescue application. En 2016 2nd International Conference on Science in Information Technology (ICSITech), pp. 254–259.

Liu, Y., Xiong, R., Wang, Y., Huang, H., Xie, X., Liu, X., y Zhang, G. (2016). Stereo visual-inertial odometry with multiple kalman filters ensemble. IEEE Transactions on Industrial Electronics, 63(10):6205–6216.

Lobo, A., Kadam, R., Shajahan, S., Malegam, K.,Wagle, K., y Surve, S. (2014). Localization and tracking of indoor mobile robot with beacons and dead reckoning sensors. En 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, pp. 1–4.

Ohno, K., Tsubouchi, T., Shigematsu, B., y Yuta, S. (2004). Di erential GPS and odometry-based outdoor navigation of a mobile robot. Advanced Robotics, 18(6):611–635.

Pierlot, V. y Van Droogenbroeck, M. (2014). A new three object triangulation algorithm for mobile robot positioning. IEEE Transactions on Robotics, 30(3):566–577.

Scaramuzza, D. y Fraundorfer, F. (2011). Visual odometry [tutorial]. IEEE Robotics &amp Automation Magazine, 18(4):80–92.

Siegwart, R., Nourbakhsh, I. R., y Scaramuzza, D. (2011). Introduction to Autonomous Mobile Robots. Intelligent Robotics and Autonomous Agents series. MIT Press, London, England, 2 edición.

Zhou, B., Tang, Z., Qian, K., Fang, F., y Ma, X. (2017). A LiDAR odometry for outdoor mobile robots using NDT based scan matching in GPS-denied environments. En 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE.

Published
2024-04-22
How to Cite
Mar-Castro, E., Aparicio-Lastiri, L. M., Pérez-Arista, O. V., Núñez-Cruz, R. S., & Antonio-Yañez, E. D. (2024). Comparisson between generalized geometric triangulation and odometry. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial2), 28-33. https://doi.org/10.29057/icbi.v12iEspecial2.12240