Multiferroic properties of the biphasic composite 0.8BaTiO3-0.2CoFe2O4 obtained thru asisted machanosynthesis.

  • Juan Pablo Martínez Pérez Universidad Autónoma del Estado de Hidalgo
  • A. M. Bolarín-Miró Universidad Autónoma del Estado de Hidalgo
  • C.A. Cortés- Escobedo Instituto Politécnico Nacional
  • F. Sánchez-De Jesús Universidad Autónoma del Estado de Hidalgo
Keywords: biphasic multiferroic, cobalt ferrite, barium titanate, ferromagnetic, ferroelectric

Abstract

Multiferroic materials simultaneously exhibit ferroelectric and ferromagnetic orders, which make them highly interesting from the technological perspective. However, there is only one known room temperature monophasic multiferroic material, the bismuth ferrite (BiFeO3). An alternative to the single phase multiferroics is the development biphasic multiferroic materials, with a ferromagnetic and a ferroelectric phase. In the present work the multiferroic characterization of the composite 0.8BaTiO3-0.2CoFe2O4 obtained thru thermal treatment assisted high energy ball milling is reported. Proportional adequate amounts of BaTiO3 and CoFe2O4 were mixed in a high ball energy mill SPEX 8000D during 2 minutes, with a ball to powder ratio of 60:1 in an oxidizing atmosphere (air). The mixture was uniaxial pressed at 800 MPa followed by a sintering process at 1300 ˚C during 2 h. The DRX results confirm the presence of the ferroioc phases BaTiO3 and CoFe2O4, without evidence of chemical interaction between them. The dielectric characterization shows a typical behavior of a ferroelectric material with a relative permittivity of 400 at 1MHz. The vibrating sample magnetometry analysis showed a ferrimagnetic behavior, similar to that exhibited by the cobalt ferrite, with the particularity of a lower remanent magnetization (11.5 emu/g), due to the proportion of the ferrite present in the composite. The dielectric and magnetic results demonstrate the multiferroic character of the composite.

Downloads

Download data is not yet available.

References

Grigalaitis, R., Vijatović Petrović, M. M., Bobić, J. D., Dzunuzovic, A., Sobiestianskas, R., Brilingas, A., Banys, J. (2014). Dielectric and magnetic properties of BaTiO3 –NiFe2O4 multiferroic composites. Ceramics International, 40 (4) 6165–6170. https://doi.org/10.1016/j.ceramint.2013.11.069.

Hill, N. A., & Filippetti, A. (2002). Why are there any magnetic ferroelectrics? Journal of Magnetism and Magnetic Materials, 242–245 (PART II), 976–979. https://doi.org/10.1016/S0304-8853(01)01078-2

Jonscher, A. K. (1981). Review A new understanding of the dielectric relaxation of solids. Journal of Materials Science, 16, 2037–2060.

Karaki, T., Yan, K., Miyamoto, T., & Adachi, M. (2007). Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Japanese Journal of Applied Physics, Part 2: Letters, 46 (4–7), 97–99. https://doi.org/10.1143/JJAP.46.L97

Khaja Mohaideen, K., & Joy, P. A. (2013). Influence of initial particle size on the magnetostriction of sintered cobalt ferrite derived from nanocrystalline powders. Journal of Magnetism and Magnetic Materials, 346, 96–102. https://doi.org/10.1016/j.jmmm.2013.07.016

Khaja Mohaideen, K., & Joy, P. A. (2014). High magnetostriction parameters for low-temperature sintered cobalt ferrite obtained by two-stage sintering. Journal of Magnetism and Magnetic Materials, 371, 121–129. https://doi.org/10.1016/j.jmmm.2014.07.013

Li, J. F., Wang, K., Zhang, B. P., & Zhang, L. M. (2006). Ferroelectric and piezoelectric properties of fine-grained Na 0.5K 0.5NbO 3 lead-free piezoelectric ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society, 89 (2), 706–709. https://doi.org/10.1111/j.1551-2916.2005.00743.x

Lopatin, S., Lopatina, I., & Lisnevskaya, I. (1994). Magnetoelectric PZT/ferrite composite materials. Ferroelectrics, 162 (1), 63–68. https://doi.org/10.1080/00150199408245091

Mohaideen, K. K., & Joy, P. A. (2012). Enhancement in the magnetostriction of sintered cobalt ferrite by making self-composites from nanocrystalline and bulk powders. ACS Applied Materials and Interfaces, 4(12), 6421–6425. https://doi.org/10.1021/am302053q

Pedro-García, F., Sánchez-De Jesús, F., Cortés-Escobedo, C. A., Barba-Pingarrón, A., & Bolarín-Miró, A. M. (2017). Mechanically assisted synthesis of multiferroic BiFeO3 : Effect of synthesis parameters. Journal of Alloys and Compounds, 711, 77–84. https://doi.org/10.1016/j.jallcom.2017.03.292

Ryu, J., Carazo, a. V., Uchino, K., & Kim, H. E. (2001). Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. Journal of Electroceramics, 7, 17–24. https://doi.org/10.1023/A:1012210609895

Schileo, G., Pascual-Gonzalez, C., Alguero, M., Reaney, I. M., Postolache, P., Mitoseriu, L., Feteira, A. (2016). Yttrium Iron Garnet/Barium Titanate Multiferroic Composites. Journal of the American Ceramic Society, 99(5), 1609–1614. https://doi.org/10.1111/jace.14131

Shrout, T. R., & Zhang, S. J. (2007). Lead-free piezoelectric ceramics: Alternatives for PZT. Journal of Electroceramics, 19(1), 111–124. https://doi.org/10.1007/s10832-007-9047-0

Van Den Boomgaard, J., Van Run, A. M. J. G., & Van Suchtelen, J. (1976). Magnetoelectricity in Piezoelectric—Magnetostrictive Composites. Ferroelectrics, 10(1), 295–298. https://doi.org/10.1080/00150197608241997

Van Run, A. M. J. G., Terrell, D. R., & Scholing, J. H. (1974). Grown Eutectic Magnetoelectric Composite Material. Journal of Materials Science, 9(10), 1710–1714.

van Suchtelen, J. (1972). Product properties: A new application of composite materials. Philips Research Report, 27, 28–37.

Yang, H., Zhang, G., Lin, Y., Ye, T., & Kang, P. (2015). Electrical, magnetic and magnetoelectric properties of BaTiO3/BiY2Fe5O12 particulate composites. Ceramics International, 41(5), 7227–7232. https://doi.org/10.1016/j.ceramint.2015.01.139

Zhao, S., Li, G., Ding, A., Wang, T., & Yin, Q. (2006). Ferroelectric and piezoelectric properties of (Na, K)0.5Bi0.5TiO3 lead free ceramics. Journal of Physics D: Applied Physics, 39(10), 2277–2281. https://doi.org/10.1088/0022-3727/39/10/042

Published
2019-12-13
How to Cite
Martínez Pérez, J. P., Bolarín-Miró, A. M., Cortés- Escobedo, C., & Sánchez-De Jesús, F. (2019). Multiferroic properties of the biphasic composite 0.8BaTiO3-0.2CoFe2O4 obtained thru asisted machanosynthesis. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 7(Especial-2), 6-9. https://doi.org/10.29057/icbi.v7iEspecial-2.4707

Most read articles by the same author(s)

<< < 1 2