Synthesis of Gismondina-type Zeolites using urban and industrial waste

Keywords: Zeolites, Hydrothermal Synthesis, Gismondine, Kaolin, Aluminum

Abstract

In this research work, the synthesis of zeolites belonging to the Gismondina type group made from kaolin sand, sodium hydroxide and aluminum can is presented, using the hydrothermal method. The effect of the addition of aluminum previously dissolved in a 2M NaOH solution is studied, as well as the thermal stability of the structure of the zeolite obtained. The products obtained are analyzed using X-ray diffraction characterization techniques and scanning electron microscopy. The results show that the added aluminum is essential to synthesize the zeolite. It is evident that the structure of the powders obtained are not stable at 400 ºC.

Downloads

Download data is not yet available.

References

Albert, B. ., Cheetham, A. K., Stuart, J. A., & Adams, C. J. (1998). Investigations on P zeolites: synthesis, characterisation, and structure of highly crystalline low-silica NaP. Microporous and Mesoporous Materials, 1–10.

Barrer, R. M., & Munday, B. M. (1971). Cation exchange reactions of zeolite na-P. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2909. https://doi.org/10.1039/j19710002909

Betzabé-Piña, A. (2011). Explotaciones mineras de Bauxita.

Cardoso, A. M., Paprocki, A., Ferret, L. S., Azevedo, C. M. N., & Pires, M. (2015). Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Microporous and Mesoporous Materials, 139, 59–67. https://doi.org/10.1016/j.fuel.2014.08.016

Diáz Guzmán, D. (2020). Zeolitas naturales: Composición mineralógica, análisis microestructural, composición química, estudios de adsorción y térmicos.

Espejel-Ayala, F., Solís-López, M., Schouwenaars, R., & Ramírez-Zamora, R. M. (2015). Sintesis de Zeolita P utilizando jales de cobre. Revista Mexicana de Ingeniería Química, 14. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1232

Gao, S. S., Wang, X. L., Pei, Y. C., Meng, X. J., & Chen, N. C. (2018). P-type molecular sieve antibacterial agent and hydrothermal control. Solid State Phenomena, 281 SSP, 887–892. https://doi.org/10.4028/www.scientific.net/SSP.281.887

Hansen, S., Håkansson, U., & Fälth, L. (1989). Structure of synthetic zeolite Na-P2. Acta Crystallographica. Section C, Crystal Structure Communications, 46(6), 1361–1362. https://doi.org/10.1107/s010827018901262x

Huo, Z., Xu, X., Lü, Z., Song, J., He, M., Li, Z., Wang, Q., & Yan, L. (2012). Synthesis of zeolite NaP with controllable morphologies. Microporous and Mesoporous Materials, 158, 137–140. https://doi.org/10.1016/j.micromeso.2012.03.026

Jha, B., & Singh, D. N. (2016). Fly Ash Zeolites: Innovations, Applications, and Directions. In Advanced Structured Materials (pp. 5–31). Singapore, Singapore. https://doi.org/10.1007/978-981-10-1404-8

Król, M. (2020). Natural vs. Synthetic zeolites. Crystals, 10(7), 1–8. https://doi.org/10.3390/cryst10070622

Lutz, W., Engelhardt, G., Fichtner-Schmittler, H., Peuker, C., Löffler, E., & Siegel, H. (1985). The influence of water steam on the direct phase transformation of zeolite NaA to nepheline by thermal treatment. Crystal Research and Technology, 20(9). https://doi.org/10.1002/crat.2170200917

Ma, W., Brown, P. W., & Komarneni, S. (1998). Characterization and cation exchange properties of zeolite synthesized from fly ashes. Journal of Materials Research, 13(1), 3–7. https://doi.org/10.1557/JMR.1998.0001

Maldonado, M., Oleksiak, M. D., Chinta, S., & Rimer, J. D. (2013). Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. Journal of the American Chemical Society, 135(7), 2641–2652. https://doi.org/10.1021/ja3105939

Meyer, F. (2004). Disponibilidad de reservas de bauxita. Natural Resources. Research, 13 (3), 161-172.

Mumpton, F. A. (1960). Clinoptilolite redefined. American Mineralogist, 45(3–4), 351–369.

Novembre, D., Gimeno, D., & Del Vecchio, A. (2021). Synthesis and characterization of Na-P1 (GIS) zeolite using a kaolinitic rock. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-84383-7

Ostrooumov, M., Cappelletti, P., & Gennaro, R. De. (2012). Applied Clay Science Mineralogical study of zeolite from New Mexican deposits (Cuitzeo area , Michoacan , Mexico ). Applied Clay Science, 55, 27–35. https://doi.org/10.1016/j.clay.2011.09.011

Pal, P., Das, J. K., Das, N., Bandyopadhyay, S., & Pal, Pameli;Das, Jugal K;Das, Nandini;Bandyopadhyay, S. (2013). Synthesis of NaP zeolite at room temperature and short crystallization time by sonochemical method. Ultrasonics Sonochemistry, 20(1), 314–321. https://doi.org/10.1016/j.ultsonch.2012.07.012

Park, M., Choi, C. L., Lim, W. T., Kim, M. C., Choi, J., & Heo, N. H. (2000a). Molten-salt method for the synthesis of zeolitic materials I. Zeolite formation in alkaline molten-salt system. Microporous and Mesoporous Materials, 37(1–2), 81–89. https://doi.org/10.1016/S1387-1811(99)00196-1

Park, M., Choi, C. L., Lim, W. T., Kim, M. C., Choi, J., & Heo, N. H. (2000b). Molten-salt method for the synthesis of zeolitic materials II. Characterization of zeolitic materials. Microporous and Mesoporous Materials, 37(1–2), 91–98. https://doi.org/10.1016/S1387-1811(99)00195-X

Rodrigues, M., Souza, A., & Santos, I. (2016). Brazilian Kaolin Wastes: Synthesis of Zeolite P at Low-Temperature. American Chemical Science Journal, 12(4), 1–11. https://doi.org/10.9734/acsj/2016/22771

Wang, P., Sun, Q., Zhang, Y., & Cao, J. (2019). Alkali-dissolving hydrothermal synthesis of zeolite P from fly ash. Micro and Nano Letters, 14(5), 572–576. https://doi.org/10.1049/mnl.2018.5650

World-Aluminium. (2018). Sustainable Bauxite Mining Guidelines. www.world-aluminium.org

Yoldi, M., Fuentes-Ordoñez, E. G., Korili, S. A., & Gil, A. (2019). Zeolite synthesis from industrial wastes. Microporous and Mesoporous Materials, 287(March), 183–191. https://doi.org/10.1016/j.micromeso.2019.06.009

Zhang, Y., Kang, W., Han, H., Wang, H., Chen, Y., Gong, X., Zhai, C., & Song, H. (2019). In-situ synthesis of NaP zeolite doped with transition metals using fly ash. Journal of the American Ceramic Society, 102(12), 7665–7677. https://doi.org/10.1111/jace.16623

Published
2021-12-12
How to Cite
Ibarra-Cruz, L. E., Legorreta-García, F., Valdez-Sierra, J., Pérez-González, N. K., Díaz-Guzmán, D., & García-Hernández, A. L. (2021). Synthesis of Gismondina-type Zeolites using urban and industrial waste. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 201-206. https://doi.org/10.29057/icbi.v9iEspecial2.7999

Most read articles by the same author(s)

1 2 > >>