Synthesis, characterization and study of the reaction nature of the beundantite

Keywords: Beudantite, synthesis, characterization, alkaline decomposition, jarosite, nature of the reaction, morphology

Abstract

In this work is shown a study on the synthesis, characterization and study of the nature of decomposition of the beudantite. The synthesis was carried out using the maximum dissolution technique, at a temperature  of 94 °C, variation of pH and mechanical stirring. The solids so obtained were characterized by scanning electron microscopy in conjunction of energy disperssive spectrometry of X rays (SEM-EDS), X ray diffraction (XRD), inductively coupled plasma spectrometry (ICP), atomic absorption spectrometry (AAS), gravimetry and dicromatography. The obtained product shows a tendency to spheroid morphology, with particle sizes majority of 25 microns, constituted by rombohedral crystals interconnected each one in a relatively compact texture. The above characteristics are favorable to execute the study of the nature of reaction. According with the obtained results, it could be observed that the decomposition of the beudantite consist of three periods; an induction period (without apparent changes), the proggressive conversion period (where there is a diffusion of the ions  and  to the solution), and finally a stabilization period, which indicates the end of the reaction. The curves obtained are of the type "S" and the treatment of the results fit favorably to the decreasing core model and chemical control.

Downloads

Download data is not yet available.

References

Alcobé, X., Bassas, J., Tarruella, I., Roca, A., y Viñals, J., (2001). Stuctural Characterization of Shynthetic Beudantite - Type Phases by Rietveld Refinamnt. Materials Science Forum, Vols. 378 -381, pp. 671 -676.

Forray, F.L., Smith, A.M.L., Drouet, C., Navrotsky, A., Wright, K., Hudson-Edwards, K.A., DUbbin, W.E., (2010). Synthesis, characterization and thermochemistry of a Pb-jarosite. Geochimica et Cosmochimica Acta, 74, 215-224. DOI: 10.1016/j.gca.2009.09.003

Frost, R.L., Wills, R.-A., and Martens, W., (2005). Raman Spectrometry of Beaverite and Plumbojarosite. Journal of Raman Spectrometry, 36 (12), 1106-1112. DOI: 10.1002/jrs.1414

Hatch, L. P., (1953). Ultimate Disposal of radioactive wastes. American Scientist, 41, pp. 410-422

Hudson-Edwards, K.A., (2019). Uptake and release of arsenic and antimony in alunite-jarosite and beudantite group minerals. American Mineralogist, 104, 633-640. DOI: 10.2138/am-2019-6591

Hudson-Edwards, K.A., Smith, A.M.L., Dubbin, W.E., Bennett, A.J., Murphy, P.J., and Wright, K., (2008). Comparison of the structures of natural and synthetic Pb-Cu-jarosite-type compounds. Eur. J. Mineral, 20, 241-252. DOI: 10.1127/0935-1221/2008/0020-1788

Jambor, J. L., (2000). Nomenclature of the Alunite Supergroup: Reply. The Canadian Mineralogist 38, 1298–1303. DOI: 10.2113/gscanmin.38.5.1298

Jones, F., (2019). Crystallization of Jarosite with Variable Al3+ Content: The Transition to Alunite. Minerals, 7, 90, 1-17. DOI: 10.3390/min7060090

Kolitsch, U., and Pring A., (2001). Crystal chemistry of the crandallite, beudantita and alunita groups: a review and evaluation of the suitability as storage materials for toxic metals. Journal of Mineralogical and Petrological Sciences, 96, 67-78. DOI: 10.2465/JMPS.96.67

Mandarino, J. A., (1999). Fleischer´s glossary of mineral species 1999. The mineralogical Record Inc., Tuczon, Az, USA, 225 pp.

Roca, A., Viñals, J., Cruells, M., (2004). Estructuras del Tipo Alunita como sistema de Inertización de Arsénico. Simposio Internacional Sobre el Medio Ambiente, pp. 23 - 28

Smith, A.M.L., Dubbin, W.E., Wright, K., Hudson-Edwards, K.A., (2006). DIssolution of lead- and lead-arsenic-jarosite at pH 2 and 8 and 20 °C: Insights from batch experiments. Chemical Geology, 229, 344-361. DOI: 10.1016/J.chemgeo.2005.11.006

Sunyer, A., Viñasl, J., (2011a). Arsenate substitution in natroalunite: A potential medium for arsenic immobilization. Part 1: Synthesis and compositions. Hydrometallurgy, 109, 54-64. DOI: 10.1016/j.hydromet/2011.05.009

Sunyer, A., Viñals, J., (2011b). Arsenate substitution in natroalunite: A potential medium for arsenic immobilization. Part 2: Cell parameters and stability tests. Hydrometallurgy, 109, 106-115. DOI: 10.1016/j.hydromet/2011.06.001

Viñals, J., Sunyer, A., Molera, P., Cruells, M., Llorca, N., (2010). Arsenic stabilization of calcium arsenate waste by hydrothermal precipitation of arsenical natroalunite. Hydrometallurgy, 104, 247-259. DOI: 10.1016/j.hydromet.2010.06.013

Zhu, Y., Wei, W., Tang, S., Zhu, Z., Yan, Q., Zhang, L., & Deng, H., (2021). A comparative study on the dissolution and stability of beudantite and hidalgoite at pH 2-12 and 25-45 °C for the possible long-term simultaneous immobilization of arsenic and lead. Chemosphere, 263, 128386. DOI: 10.1016/J.CHEMOSPHERE.2020.128386

Published
2021-12-12
How to Cite
Salinas-Rodríguez , E., Mesinas-Romero, M. A., Hernández-Ávila, J., Acevedo-Sandoval, O. A., Rodríguez-Lugo, V., & Cerecedo-Sáenz, E. (2021). Synthesis, characterization and study of the reaction nature of the beundantite. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 105-109. https://doi.org/10.29057/icbi.v9iEspecial2.8000

Most read articles by the same author(s)

1 2 3 4 > >>