Dron assisted geological mapping: cerro de san cristóbal, Hidalgo

Keywords: Drone, Cartography, Photointerpretation, Cerro de San Cristóbal, Hidalgo

Abstract

Unmanned Aerial Vehicles (UAV) or drones allow the acquisition of centimetric-resolution land images in short time and low cost. Consequently, their use in geological mapping has proliferated as the images can be integrated into ortho mosaics for interpretation and generation of reliable and inexpensive geologic cartography, in comparison to traditional mapping. In this article, the photointerpretation of 101 ha in the east sector of Cerro de San Cristóbal (north of Pachuca, Hidalgo) is presented, using images with a 10 cm resolution. Mapped area is dominated by extremely abrupt topography, with a range of elevation around 400 m. The work to produce the geologic map, involved 8 hours of fieldwork (flight with a DJI Inspire I Pro drone) and 18 hours of office work (image processing and photointerpretation). On the map, three lithologic units and high-angle faults were identified, suggesting that, effectively, the use of drones is ideal in the preliminary identification of geological features, more than in traditional mapping.

Downloads

Download data is not yet available.

References

Allum, J.A.E., (1966). Photogeology and Regional Mapping. Pergamon Press, Londres, Reino Unido.

Belt, K., Paxton, S.T., (2005). GIS as an aid to visualizing and mapping geology and rock properties in regions of subtle topography. Geological Society of America Bulletin 117, 1-2, 149-160. DOI: 10.1130/B25463.1

Donovan, J., Lebaron, A. (2009). A comparison of Photogrammetry and laser scanning for the purpose of automated rock mass characterization. Presented at the 43rd U.S. Rock Mechanics Sympossium & 4th U.S.-

Canada Rock Mechanics Sympossium. American Rock Mechanics Association.

Geyne, A. R., Carl, F. J., Segerstrom, K., Black, R. F. y Wilson, I. F. (1963). Geología y yacimientos minerales del distrito Pachuca-Real del Monte, Estado de Hidalgo México. D.F, México: Consejo de Recursos Naturales no Renovables

Guerra Peña, F., (1980). Fotogeología. Universidad Nacional Autónoma de México, México, D.F.

Guerra Peña, F., (2003). Las doce principales reglas de la interpretación fotogeológica y las bases fundamentales de que se derivan. Investigaciones Geográficas 50, 2-66.

Honarmand, M., Shahjriai, H., (2021) Geological Mapping Using Drone-Based Photogrammetry: An Application for Exploration of Vein-Type Cu Mineralization. Minerals 11, 585. DOI:10.3390/min11060585.

Linder, W. (2009). Digital Photogrammetry (Vol. 1). Springer. Berlin Germany.

Lisle, R.J., (2021). Geological Structures and Maps a Practical Guide. Butterworth-Heineman, Elsevier. Cambridge, Ma, USA.

Lisle, R. J., Brabham, P., Barnes, J. W., (2011). Basic Geological Mapping (Geological Field Guide). Wiley-Blackwell, Oxford, United Kingdom.

Lu, B., He, Y., (2017). Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogrammetry and Remote Sensing 128, 73-85.

Ludwig, M., Runge, C. M., Friess, N., Koch, T.L., Richter, S., Seyfried, S., Wraase, L., Lobo, A., Sebastià, M. T., Reudenbach, C., Nauss, T., (2020). Quality Assessment of Photogrammetric Methods- A Workflow for Reproducible UAS Orthomosaics. Remote Sensing 12, 3831.

Manfreda, S., McCabe, M., Miller, P., Lucas, R., Madrigal, V. P., Mallinis, G., Dor E. B., Helman, D., Estes, L., Ciralolo, G., et al., (2018). On the Use of Unmanned Aerial systems for Environmental Monitoring. Remote Sensing 10(4), 641. DOI: 10.339/rs10040641

Ortiz Campa, A.M., Aguilar Díaz, J. M., Ángeles-Godínez, H.M., Ramos García, G.A., Díaz Ortiz, M.A., Del Ángel Trejo, L., Escamilla Casas, J. C., Castro Mora, J., Ortiz Hernández. L. E., (2016). Reconocimiento Geológico del Cerro San Cristóbal, Distrito Minero Pachuca-Real del Monte, Estado de Hidalgo. Presentado en el IX Encuentro de Investigación del Área Académica de Ciencias de la Tierra y Materiales, CT-003. Universidad Autónoma del Estado de Hidalgo

Ramón Melo, M.L., (2017). Análisis Geomorfológico del Cerro San Cristóbal, y Cerro Cumbre Las Tres Marías, Pachuca de Soto, Hidalgo, México. Tesis. Licenciatura en Ingeniería en Geología Ambiental, Universidad Autónoma del Estado de Hidalgo, 114 pp.

Sánchez Rojas, L. E., Arredondo Mendoza, J. A. and Cardoso Vázquez, E. A., (2005). Informe Técnico de la Carta Geológico-Minera Pachuca, F14D81 Escala 1:50,000, Estado de Hidalgo, Servicio Geológico Mexicano. Pachuca. 115 pp.

Sánchez Rojas, L. E., Arredondo Mendoza, J. A. and Cardoso Vázquez, E. A., (2007). Carta Geológico-Minera Pachuca, F14D81 Escala 1:50,000, Estado de Hidalgo. Servicio Geológico Mexicano. Pachuca.

Sang, X., Xue, L., Ran, X., Li, X., Liu, J., Liu, Z., (2020). Intelligent High-Resolution Geological Mapping Based on SLIC-CNN. International Journal of Geo-Information 9, 99, 1-23.

Smellie J. L., Walker, A. J., Burgess, R., (2016). Complex circular subsidence structures in tephra deposits on large blocks of ice: Varda tuff cone, Öræfajökull, Iceland. Bulletin of Volcanology 78, 56.

Vasuki, Y., Holden E., Kovesi, P., Mickethwaite, S., (2014). Semi-automatic mapping of geological structures using UAV-based photogrammetric data: An image analysis approach. Computers & Geosciences 69, 22-3

Published
2022-07-05
How to Cite
Juárez-Montiel, A., Díaz-Jiménez, M., Uribe-Alcántara, E. M., Escamilla Casas, J. C., Ortiz-Hernández, L. E., & Montiel-Palma, S. (2022). Dron assisted geological mapping: cerro de san cristóbal, Hidalgo. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(19), 94-98. https://doi.org/10.29057/icbi.v10i19.8871

Most read articles by the same author(s)

1 2 > >>