Voltage regulation of a DC-DC Buck type converter for an electrocoagulation cell

Keywords: Electrocoagulation, Buck converter, PID controller, GPI controller, Voltage regulation

Abstract

Electrocoagulation (EC) is an electrochemical process to destabilize contaminants present in water by applying electrical energy through electrodes immersed in water. One of the factors that emerge from the EC process is the supply of electrical energy, this is quantified by the current density, which relates the applied current and the area of the electrodes. Different authors suggest that, to obtain a better performance in the EC process, the current density should be kept constant. However, due to the variation in the resistivity of the water, there will be changes in the applied current density, decreasing the efficiency of contaminant removal. With the objective of keeping the voltage constant in an electrocoagulation cell, this work presents the modeling, design and simulation of PID and PD+GPI controllers for the regulation of the electrical voltage in the electrocoagulation process for the treatment of gray water by a Buck type DC-DC converter.  

Downloads

Download data is not yet available.

References

Åström, K. J. and Hägglund, T. (2009). Control PID avanzado. Pearson, Madrid.

Cantera-Cantera, L. A. y Calvillo-T´ellez, A. (2020). Photovoltaic solar power for a wastewater electrocoagulation prototype alimentación solar fotovoltaica para un prototipo de electrocoagulación de aguas residuales. Journal of Scientific and Technical Applications, pages 32–36.

Cantera-Cantera, L. A., Calvillo-T´ellez, A., y Lozano-Hern´adez, Y. (2020). Turbidity, dissolved oxygen and ph measurement system for grey water treatment process by electrocoagulation. Journal of Technological Development, pages 4–14.

Garcia-Segura, S., Eiband, M. M. S., de Melo, J. V., y Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801:267–299.

Garrido, R. y Luna, J. L. (2017). Micro-posicionamiento de un motor piezoeléctrico ultrasónico lineal basado en observadores proporcionales integrales generalizados.

Martínez Cruz, G., García Osornio, A., Hernández Palacios, V. O., y Ramírez Salgado, M. d. R. (2019). Manual de conductividad de electrolitos.

Ogata, K. (2003). Ingeniería de control moderna. Pearson Educación.

Omaña-Butrón, A. J., Leines-Martínez, A., Ramírez-Díaz, A., Galván-Guerra y R., Velázquez-Velázquez, J. E. (2020). Implementación de controladores por modos deslizantes en un convertidor boost. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 8(15):82–91.

Restrepo Mejía, A. P., Arango Ruiz, A. ., and Garcés Giraldo, L. F. (2006). La electrocoagulación: retos y oportunidades en el tratamiento de aguas.

Sira-Ramirez, H. J. y Silva-Ortigoza, R. (2006). Control design techniques in power electronics devices. Springer Science & Business Media.

Velázquez-Velázquez, J.-E., Galván-Guerra, R., Ortega-Pérez, J.-A., Lozano-Hernández, Y., y Villafuerte-Segura, R. (2020). Finite-time current tracking in boost converters by using a saturated super-twisting algorithm. Complexity, 2020.

Zurita-Bustamante, E. W., Linares-Flores, J., Guzmán-Ramírez, E., y Sira-Ramírez, H. (2011). A comparison between the gpi and pid controllers for the stabilization of a dc-dc buck converter: A field programmable gate array implementation. IEEE Transactions on Industrial Electronics, 58(11):5251–5262.

Published
2022-11-30
How to Cite
Cantera-Cantera, L. A., Luna-Pineda, J. L., Calvillo-Téllez, Ándres, & Zurita-Bustamante, E. W. (2022). Voltage regulation of a DC-DC Buck type converter for an electrocoagulation cell. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial6), 128-133. https://doi.org/10.29057/icbi.v10iEspecial6.8958