Kaolin clays: elaboration of geopolymers with kaolin sand

Keywords: Kaolin, kaolin sand, metakaolin, kaolinite, geopolymers

Abstract

The following research work presents the difference between kaolinite, kaolin, kaolin sand and metakaolin. Studies were carried out on a representative sample of kaolin sand, using different characterization techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The powder is calcined at two temperatures at 800 and 1000 °C, analyzing the crystallography of each sample. A geopolymer is made from metakaolin at different temperatures, applying and not applying uniaxial pressure, in order to evaluate its compressive strength. The polymers present an average maximum compressive strength of 112.05 MPa.

Downloads

Download data is not yet available.

References

Awad, M. E., López-Galindo, A., Setti, M., El-Rahmany, M. M., & Iborra, C. V. (2017). Kaolinite in pharmaceutics and biomedicine. International Journal of Pharmaceutics, 533(1), 34–48. https://doi.org/10.1016/j.ijpharm.2017.09.056

Bartolomè, J. F. (1997). El Caolín: composición, estructura, génesis y aplicaciones. Boletin Sociedad Española de Cerámica y Vidrio, 36, 20.

Bustamente García, J. (2012). Anexo I: FICHAS DE CAMPO, CARTA INVENTARIO FÍSICO DE LOS RECURSOS MINERALES, ETZATLÁN, F13-D53, ESCALA 1:50,000, ESTADOS DE JALISCO Y NAYARIT. SERVICIO GEOLÓGICO MEXICANO, 221–230. https://doi.org/10.2307/j.ctv3f8qgp.12

Chakraborty, A. K. (2014). Phase transformation of kaolinite clay. In Phase Transformation of Kaolinite Clay (Vol. 9788132211). https://doi.org/10.1007/978-81-322-1154-9

Chandrasekhar, S. (1996). Influence of metakaolinization the formation of zeolita 4A from kaolin. Clay Minerals, 253–261.

De Noni, A., Hotza, D., Soler, V. C., & Vilches, E. S. (2009). Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates. Journal of the European Ceramic Society, 29(6), 1039–1046. https://doi.org/10.1016/j.jeurceramsoc.2008.07.052

De Sousa, L. L., Salomão, R., & Arantes, V. L. (2017). Development and characterization of porous moldable refractory structures of the alumina-mullite-quartz system. Ceramics International, 43(1), 1362–1370. https://doi.org/10.1016/j.ceramint.2016.10.093

Dewi, R., Agusnar, H., Alfian, Z., & Tamrin. (2018). Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. Journal of Physics: Conference Series, 1116(4). https://doi.org/10.1088/1742-6596/1116/4/042010

Drits, V. A., Sakharov, B. A., Dorzhieva, O. V., Zviagina, B. B., & Lindgreen, H. (2019). Determination of the phase composition of partially dehydroxylated kaolinites by modelling their X-ray diffraction patterns. Clay Minerals, 54(3), 309–322. https://doi.org/10.1180/clm.2019.39

García-Verduch, A. (1985). Origen y composicion de las arcillas ceramicas. Boletín de La Sociedad Española de Cerámica y Vidrio, 24(6), 395–404.

García Reyes, E. (2004). ANEXO:2 INVENTARIO FÍSICO DE LOS RECURSOS MINERALES DEL MUNICIPIO AGUA BLANCA, HGO. CONSEJO DE RECURSOS MINERALES.

Hernández Pérez, Y. I. (2017). Caracterización mineralógica y geoquímica de caolines del área de Huayacocotla, Veracruz, (México) para uso industrial.

Huang, Y., Hu, S., Gu, Z., & Sun, Y. (2019). Fracture behavior and energy analysis of 3D concrete mesostructure under uniaxial compression. Materials, 12(12). https://doi.org/10.3390/ma12121929

Ibarra-Cruz, L. E., Legorreta-García, F., García-Hernández, A. L., Valdez-Sierra, J., Pérez-González, N., & Díaz-Guzmán, D. (2021). Síntesis de Zeolitas tipo Gismondina empleando desechos urbanos e industriales Synthesis of Gismondina-type Zeolites using urban and industrial waste. Pädi, 9. https://doi.org/https://doi.org/10.29057/icbi.v9iEspecial2.7999

Kuliffayová, M., Krajči, L., Janotka, I., & Šmatko, V. (2012). Thermal behaviour and characterization of cement composites with burnt kaolin sand. Journal of Thermal Analysis and Calorimetry, 108(2), 425–432. https://doi.org/10.1007/s10973-011-1964-0

Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Heah, C. Y. (2012). Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 30, 794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079

López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36(1–3), 51–63. https://doi.org/10.1016/j.clay.2006.06.016

Marfil, R., Bustillo, A., & Garcia Palacios, M. (1980). Morfologia y genesis de caolinitas en rocas silicificadas de la provincia de Avila (Espana). Clay Minerals, 15(3), 249–262. https://doi.org/10.1180/claymin.1980.015.3.05

Mitrović, A., & Zdujić, M. (2014). Preparation of pozzolanic addition by mechanical treatment of kaolin clay. International Journal of Mineral Processing, 132(November 2014), 59–66. https://doi.org/10.1016/j.minpro.2014.09.004

Nouri, T., & Masoumi, R. (2020). Geochemical and industrial properties of the Kejal Kaolin deposit, NW Iran. Turkish Journal of Earth Sciences, 29(2), 325–346. https://doi.org/10.3906/yer-1906-7

Ospina Gómez, P. A. (2016). Influencia de la adición o aumento en la cantidad de mullita en la resistencia a la flexión de una pasta de porcelana eléctrica comercial. 156. http://www.bdigital.unal.edu.co/51327/

Saikia, N. J., Bharali, D. J., Sengupta, P., Bordoloi, D., Goswamee, R. L., Saikia, P. C., & Borthakur, P. C. (2003). Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24(1–2), 93–103. https://doi.org/10.1016/S0169-1317(03)00151-0

Talabi, A. ., Ademilua, O. ., & Akinola, O. O. (2012). Compositional Features and Industrial Application of Ikere Kaolinite, Southwestern Nigeria. Research Journal in Engineering and Applied Sciences, 1(5), 327–333. www.emergingresource.org

Tian Jun, R., & Jin kai, X. (2002). The catalytic cracking activity of the kaolin-group minerals. Materials Letters, 57(2), 297–301. https://doi.org/10.1016/S0167-577X(02)00781-4

Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2012). Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, 28(1), 276–281. https://doi.org/10.1016/j.conbuildmat.2011.08.064

Torres, J., De Gutiérrez, R. M., Castelló, R., & Vizcayno, C. (2010). Análisis comparativo de caolines de diferentes fuentes para la produccion de metacaolín. Revista Latinoamericana de Metalurgia y Materiales, 31(1), 35–43.

Wang, M. R., Jia, D. C., He, P. G., & Zhou, Y. (2010). Influence of calcination temperature of kaolin on the structure and properties of final geopolymer. Materials Letters, 64(22), 2551–2554. https://doi.org/10.1016/j.matlet.2010.08.007

Yunsheng, Z., Wei, S., & Zongjin, L. (2010). Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47(3–4), 271–275. https://doi.org/10.1016/j.clay.2009.11.002

Zhuravlev, V. ., Yu Taranets, N., Koval, A. ., Karpets, M. ., & Naidich, Y. V. (2012). Wetting and Interface Microstructure in the System of Al2O3-SiO2 Based Ceramics/Nb-Containing Melts. The Open Ceramic Science Journal, 2, 8–14. https://doi.org/10.2174/1876395201202010008

Published
2022-12-12
How to Cite
Garcia-Hernandez, A. L., Legorreta-García, F., Valdez-Sierra, J., Ibarra-Cruz, L. E., Pérez-Gonzáles, N. K., & Díaz-Guzmán , D. (2022). Kaolin clays: elaboration of geopolymers with kaolin sand . Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial7), 102-108. https://doi.org/10.29057/icbi.v10iEspecial7.9960

Most read articles by the same author(s)

1 2 > >>