Kinematic Control for Trajectory Tracking of a 3R Manipulator

Keywords: Kinematic control, Trajectory tracking, Manipulator robots, Jacobian, Kinematic model

Abstract

This work presents the design of a control strategy to achieve trajectory tracking by the end effector of a 3R manipulator robot. The control strategy design is based on the kinematic model of the robot, utilizing the Jacobian. Theoretical results are validated both numerically and experimentally. The implementation is carried out on a platform with an Optitrack camera system to obtain the position of the end effector, using Matlab/Simulink for real-time control signal calculations.

Downloads

Download data is not yet available.

References

Baturone, A. O. (2005). Robótica: manipuladores y robots móviles. Marcombo, Barcelona, España.

Carrozza, M. C., Suppo, C., Sebastiani, F., Massa, B., Vecchi, F., Lazzarini, R., Cutkosky, M. R., y Dario, P. (2007). Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Transactions on Mechatronics, 12(4):418–429.

Colorado, R. M., editor (2016). Cinemática y dinámica de robots manipuladores. Alpha Editorial.

Cortés, F. R. (2012). Matlab: aplicado a robótica y mecatrónica. Alpha Editorial.

Ibarra, E. G., Enriquez, M. A., Lozano, Y., Galván-Guerra, R., y Maya, M. C. (2019). Modelado cinemático y dinámico de un manipulador antropomórfico de cuatro grados de libertad. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 7(Especial):116–123.

Lee, C. (1982). Robot arm kinematics, dynamics, and control. Computer, 15(12):62–80.

Li, W., Ng, W. Y., Zhang, X., Huang, Y., Li, Y., Song, C., Chiu, P. W. Y., y Li, Z. (2022). A kinematic modeling and control scheme for different robotic endoscopes: A rudimentary research prototype. IEEE Robotics and Automation Letters, 7(4):8885–8892.

Petrescu, F. I. y Petrescu, R. V. (2016). Cinemática directa e inversa a los robots antropomórficos. ENGEVISTA, 18(1):109–124.

Petrescu, R. V., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Apicella, A., y Petrescu, F. I. (2017). Inverse kinematics at the anthropomorphic robots, by a trigonometric method. American Journal of Engineering and Applied Sciences, 10(2):394–411.

Pololu Corporation (2022). Pololu Maestro Servo Controller [User’s Guide]. Pololu corporation, pp. 01–102. https://www.pololu.com/docs/pdf/0J40/maestro.pdf.

Ponce, R., Merchán, E. A., Hernández, L. H., Salgado, C., y Pa, A. E. F. (2022). Solución a la cinemática directa e inversa de manipuladores robóticos, empleando álgebra de cuaterniones duales. Memorias de Divulgación Científica y Tecnológica de la Ingeniería Mecánica en México.

Ramírez-López, L. A. y Martníez-Aragón, M. (2022). Seguimiento de trayectorias mediante cinemática diferencial aplicado en robots manipuladores. Pädi Boletín Científico De Ciencias Básicas e Ingenierías del ICBI, 10(Especial6):86–90.

Siciliano, B. y Khatib, O. (2008). Differential Kinematics and Statics. Springer London.

Spong, M. W., Hutchinson, S., y Vidyasagar, M. (2020). Robot Modeling and Control. John Wiley & Sons.

Swerdlow, D. R., Cleary, K., Wilson, E., Azizi-Koutenaei, B., y Monfaredi, R. (2017). Robotic arm-assisted sonography: Review of technical developments and potential clinical applications. American Journal of Roentgeno- logy, 208(4):733–738.

Yin, X. (2018). Kinematics analysis and simulation of 6-dof industrial robot. International Journal of Research in Engineering and Science (IJRES), 06(07):27–34.

Published
2024-04-22
How to Cite
Domínguez-Prado, A. F., Hernández-Montalvo, Ángel I., Santiaguillo-Salinas, J., García-Lozano, H. N., & González-Zárate, R. F. (2024). Kinematic Control for Trajectory Tracking of a 3R Manipulator. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial2), 14-20. https://doi.org/10.29057/icbi.v12iEspecial2.12076