The secret garden of nanotechnology: nanoflowers

Keywords: Nanomaterials, Nanoflowers, Characteristics, Synthesis, Applications

Abstract

Nanomaterials represent a powerful tool for abording contemporary challenges. Among these materials, nanoflowers stand out due to their surface, magnetic, and electrical properties, making them applicable in various fields of science such as medicine, chemistry, technology, and energy. The essentials of nanoflowers, such as their size, shape, and properties, are directly dependent on their composition and the synthesis method, turning them adaptable to the requirements of each of the mentioned disciplines. This article focuses on reviewing the most recent and relevant scientific research, providing a deeper insight into the characteristics, methods of synthesis, and applications of nanoflowers.

Downloads

Download data is not yet available.

References

Rodríguez-Escobar, W., Bejarano-Barrera, H., Villazón, Amarís, H. (1999). Importancia estratégica de los nuevos materiales en el desarrollo sostenible y como alternativa de competitividad. Ciencia e ingeniería neogranadina, 8, 33-42.

Cambell, N. A., Lesak, A. E. (2012). Libro de laboratorio de anatomía y fisiología. Editorial Paidotribo. ISBN 978-84-8019-652-9. Consultado el 18 de noviembre de 2023.

Vergara, E. (2015). En torno al universo invisible. Editorial Lulu. ISBN 9781447509066. Consultado el 18 de noviembre del 2023.

Bhatia, S., Bhatia, S. (2016). Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae, 33-93.

Ordenes, R., Arellano, M., Jara, R., Merino, R. (2014). Representaciones macroscópicas, submicroscópicas y simbólicas sobre la materia. Educación química, 25(1), 44-65.

Moreno-Coll, A. (2016). No sólo una flor: aproximación a la presencia la peonía en la Medicina y el Arte. Recuperado de: https://roderic.uv.es/bitstream/handle/10550/59249/6014813.pdf?sequence=1. Consultado el 18 de noviembre del 2023.

Ingle, A. P., Rai, M. (2017). Copper nanoflowers as effective antifungal agents for plant pathogenic fungi. Institution of engineering and technology: nanobiotechnology, 11(5), 546-551.

Shende, P., Kasture, P., Gaud, R. S. (2018). Nanoflowers: the future trend of nanotechnology for multi-applications. Artificial Cells, Nanomedicine, and Biothecnology. doi: 10.1080/21691401.2018.1428812.

Bender, P., Fock, J., Frandsen, C., Hansen, M. F., Balceris, C., Ludwig, F., Johansson, C. (2018). Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers. The Journal of Physical Chemistry C, 122(5), 3068-3077.

Zhao, L., Ji, X., Sun, X., Li, J., Yang, W., Peng, X. (2009). Formation and stability of gold nanoflowers by the seeding approach: the effect of intraparticle ripening. The Journal of Physical Chemistry C, 113(38), 16645-16651.

Jung-Lee, S., Jang, H., Nam-Lee, D. (2022). Inorganic nanoflowers-Synthetic strategies and physicochemical properties for biomedical applications: A review. Pharmaceutics, 14(9). doi: 10.3390/pharmaceutics14091887.

Kharisov, B. I. (2008). A review for synthesis of nanoflowers. Nanotechnology, 2, 190-200.

Yu, X., Cao, C. (2008). Photoresponse and field-emission properties of bismuth sulfide nanoflowers. Crystal Growth and Design, 8(11), 3951-3955.

Arzaee, N. A., Mohamad, M. F., Halim, A. A., Abdul, M. A. F., Mohamed, N. A., Safaei, J., Aadenan, A., Syed, S. N., Ismail, A. F., Teridi, M. A. (2019). Aerosol-assisted chemical vapour deposition of α-Fe2O3 nanoflowers for photoelectrochemical water splitting. Ceramics International, 45(14), 16797-16802.

Kaufmann, C. G., Zampiva, R. Y., Anzanello, M. J., Alves, A. K., Bergmann, C. P., Mortari, A. R. (2020). One-step synthesis of carbon nanoflowers by arc discharge in water. Ceramics International, 46, 26229-26232.

Syeda, F., Khalid, I., Mohammad, M., Rizvi, A., Sunil, K. K. (2021). Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC Advances, 11(55), 34613-34630. doi: 10.1039/d1ra04513j.

Bhavsar, K. S., Labhane, P. K., Dhake, R. B., & Sonawane, G. H. (2020). Solvothermal synthesis of activated carbon loaded CdS nanoflowers: Boosted photodegradation of dye by adsorption and photocatalysis synergy. Chemical Physics Letters, 744, 137202. doi:10.1016/j.cplett.2020.137202.

Qu, Y., Huang, R., Qi, W., Shi, M., Su, R., He, Z. (2020). Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catalysis Today, 332, 397-407.

Zhang, Y., R Nayak, T., Hong, H., & Cai, W. (2013). Biomedical applications of zinc oxide nanomaterials. Current molecular medicine, 13(10), 1633-1645.

Akhtar, N., Metkar, K., Girigoswami, A., Girigoswami, K. (2017). ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Materials Science and Engineering C-Mateials for Biological Applications, 1(78), 960-968. doi: 10.1016/j.msec.2017.04.118.

Jeevan-Raj, V., Gosh, R., Giriggoswami, A., Girigoswami, K. (2022). Application of zinc oxide nanoflowers in environmental and biomedical science. BBA Advances, 2. doi: 10.1016/j.bbadva.2022.100051.

Karthic, A., Roy, A., Lakkakula, A., Alghamdi, S., Shakoori, A., Babalghith, A. O., Emran, T. B., Sharma, R., Lima, C. M., Kim, B., Park, M., Zaman, S., Almeida, R. A., Coutinho, H. D. (2022). Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Molecular & Cellular Pathology, 10. doi: 10.3389/fcell.2022.984311.

Kenyon, A. J. (2002). Recent developments in rare-earth doped materials for optoelectronics. Progress in Quantum Electronics, 26(4-5), 225-284.

Shibin, A., Shibin, N., Shibin, K. (2020). GaN Nanoflowers: Growth to Optoelectronic Device. 21st Century Nanoscience – A Handbook: Nanophotonics, Nanoelectronics, and Nanoplasmonics Edited by Klaus D. ISBN 9780815356417.

Marica, I., Nekvapil, F., Stefan, M., Farcau, C., Falamas, A. (2022). Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review. Journal of Nanotechnology, 13, 472-490.

Kumar, M., Jeong, H., Lee, D. (2019). UV photodetector with ZnO nanoflowers as an active layer and a network of Ag nanowires as transparent electrodes. Superlattices and Microstructures, 126, 132–138. doi:10.1016/j.spmi.2018.12.004

Liu, N., Tao, P., Jing, C. (2018). A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation. Journal of Materials Science 53, 15051–15063. doi: 10.1007/s10853-018-2696-3.

Jianguo, Y., Zehui, Y., Yunling, J., Ting, R., Ming, S., Yanshuang Z., Qing, W., Yuning, Q., Lili, W. (2023). Nanoflower core-shell Cu@Pd catalysts for glycol oxidation reaction with an enhanced performance. Colloids and Surfaces A: Physicochemical and Engineering, 674. doi: 10.1016/j.colsurfa.2023.131928.

Dong, Z., Zhang, Q., Chen, B.-Y., & Hong, J. (2018). Oxidation of Bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency. Chemical Engineering Journal. doi:10.1016/j.cej.2018.09.179.

Tamuly, C., Saikia, I., Hazarika, M., Bordoloi, M., Hussain, N., Das, M. R., & Deka, K. (2015). Bio-derived ZnO nanoflower: a highly efficient catalyst for the synthesis of chalcone derivatives. RSC Advances, 5(12), 8604–8608. doi:10.1039/c4ra14225j.

Bera, K., Ghosh, T., & Basak, S. (2015). Synthesis of Chiral, Crystalline Au-Nanoflower Catalyst Assisting Conversion of Rhodamine-B to Rhodamine-110 and a Single-Step, One-Pot, Eco-Friendly Reduction of Nitroarenes. The Journal of Physical Chemistry C, 119(4), 1800–1808. doi:10.1021/jp5086125.

Xu, J., Wilson, A. R., Rathmell, A. R., Howe, J., Chi, M., & Wiley, B. J. (2011). Synthesis and Catalytic Properties of Au–Pd Nanoflowers. American Chemical Society Nano, 5(8), 6119–6127. doi:10.1021/nn201161m.

Yi, X., Sun, H., Robertson, N., Kirk, C. (2021). Nanoflower Ni(OH)2 grown in situ on Ni foam for high-performance supercapacitor electrode materials. Sustainable Energy Fuels, 5, 5236-5246. doi: 10.1039/D1SE01036K.

Qiao, M., Meng, F.-Y., Wu, H., Wei, Y., Zeng, X.-F., Wang, J.-X. (2022). PtCuRu Nanoflowers with Ru-Rich Edge for Efficient Fuel-Cell Electrocatalysis. Small, 18, 2204720. doi: 10.1002/smll.202204720.

Wang, L. K., Vaccari, D. A., Li, Y., Shammas, N. K. (2005). Chemical precipitation. In Physicochemical treatment processes. Humana Press, 141-197.

Published
2024-03-11
How to Cite
Lozano-Olvera, C. E., Páez-Hernández, M. E., Pérez-Silva, I., Montesinos-Vázquez, T., Álvarez-Romero, G. A., & Rodríguez-Ávila, J. A. (2024). The secret garden of nanotechnology: nanoflowers. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23). Retrieved from https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/12193

Most read articles by the same author(s)