Simulation of heat transfer in the spray dryer feed container and its temperature control

Keywords: Spray drying, Simulation, Heat transfer, Newton's second law, Conduction, Convection

Abstract

Bioactive components from plant sources are often unstable against factors such as radiation and temperature changes, which implies that their conservation and management is a challenge. One method to stabilize these types of components is spray drying, which consists of sprinkling a liquid solution in a distributed manner in the drying chamber that circulates hot air, to eliminate the water and obtain a powder. The first control point is during the feeding of the equipment, since it must be kept in a temperature range or otherwise it could generate an unfavorable modification in the thermolabile components. The objective of the work was to predict from numerical calculations of the heat transfer in the feeding container of the drying system, the effect of the finite evaluation time, and the convective and conductive heat transfer coefficients on the thermal history, in addition of power supply requirements to maintain controlled temperature.

Downloads

Download data is not yet available.

References

Al-juhaimi, F., Ghafoor, K., Özcan, M. M., Jahurul, M. H. A., Babiker, E. E., Jinap, S., … Zaidul, I. S. M. (2018). Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. Journal of Food Science and Technology, 55(10), 3872–3880. https://doi.org/10.1007/s13197-018-3370-0

Angiolillo, L., Del Nobile, M. A., & Conte, A. (2015). The extraction of bioactive compounds from food residues using microwaves. Current Opinion in Food Science, 5, 93–98. https://doi.org/10.1016/j.cofs.2015.10.001

Dow, J. O. (1999). General Introduction. In J. O. Dow (Ed.), A Unified Approach to the Finite Element Method and Error Analysis Procedures (pp. xi–xxiv). Academic Press, Inc. https://doi.org/10.1016/B978-012221440-0/50028-5

Fang, Z., & Bhandari, B. (2017). Spray Drying of Bioactives. In Y. Roos & Y. Livney (Eds.), Engineering Foods for Bioactives Stability and Delivery (pp. 261–284). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6595-3_10

Hamzalioğlu, A., & Gökmen, V. (2016). Interaction between Bioactive Carbonyl Compounds and Asparagine and Impact on Acrylamide. InV. Gökmen (Ed.), Acrylamide in Food: Analysis, Content and Potential Health Effects (pp. 355–376). Academic Press, Inc. https://doi.org/10.1016/B978-0-12-802832-2.00018-8

Khoei, A. R. (2005). Error Estimation and Adaptivity. Computational Plasticity in Powder Forming Processes, 175–209. https://doi.org/10.1016/b978-008044636-3/50006-7

Liang, W., Zhao, J., Li, Y., & Zhai, Y. (2020). Research on the fractal characteristics and energy dissipation of basalt fiber reinforced concrete after exposure to elevated temperatures under impact loading. Materials, 13(8), 1902. https://doi.org/10.3390/MA13081902

MPC. (2021). Thermal Conductivity of Materials. https://doi.org/https://material-properties.org/thermal-conductivity-of-materials/

Ortega, A., & Juan Rosales, J. (2018). Newton’s law of cooling with fractional conformable derivative. Revista Mexicana de Fisica, 64(2), 172–175. https://doi.org/10.31349/revmexfis.64.172

Papalia, T., Sidari, R., & Panuccio, M. R. (2019). Impact of Different Storage Methods on Bioactive Compounds in Arthrospira platensis Biomass. Molecules, 24, 2810. https://doi.org/10.3390/molecules24152810

Rivas, J. C., Cabral, L. M. C., & Rocha-Leão, M. H. (2020). Stability of Bioactive Compounds of Microencapsulated Mango and Passion Fruit Mixed Pulp. International Journal of Fruit Science, 20(S2), S94–S110. https://doi.org/10.1080/15538362.2019.1707746

Santos, D., Maurício, A. C., Sencadas, V., Santos, J. D., Fernandes, M. H., & Gomes, P. S. (2017). Spray Drying: An Overview. In R. Pignatello (Ed.), Biomaterials - Physics and Chemistry - New Edition (pp. 9–35). IntechOpen. https://doi.org/10.5772/intechopen.72247

Singh, R. P., & Heldman, D. R. (2009). Introduction to Food Engineering. (R. P. Singh & D. R. Heldman, Eds.) (4th ed.). Elsevier Inc.

Sridhar, K., Inbaraj, B. S., & Chen, B.-H. (2021). Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants, 10(5), 713. https://doi.org/10.3390/antiox10050713

Tran, T. T. A., & V.H. Nguyen, H. (2018). Effects of Spray-Drying Temperatures and Carriers on Physical and Antioxidant Properties of Lemongrass Leaf Extract Powder. Beverages, 4(4), 84. https://doi.org/10.3390/beverages4040084

Published
2021-12-12
How to Cite
Díaz-Montes, E., Vargas-León, E. A., Garrido-Hernández, A., & Ceron-Montes, G. I. (2021). Simulation of heat transfer in the spray dryer feed container and its temperature control. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 168-173. https://doi.org/10.29057/icbi.v9iEspecial2.7947

Most read articles by the same author(s)

1 2 3 > >>