Azúcar vítreo: La química detrás de la elaboración de caramelos
DOI:
https://doi.org/10.29057/icea.v14iEspecial.16419Palabras clave:
Sacarosa, cristalización, caramelización, textura, envasadoResumen
Los dulces de azúcar enfrentan desafíos tecnológicos y sensoriales por las transformaciones químicas y físicas de la sacarosa, sus interacciones con el agua y las condiciones de almacenamiento. Esta revisión sintetiza avances recientes sobre la química, el procesamiento y la conservación de dulces duros y blandos, destacando transformaciones como la inversión de la sacarosa, la caramelización, las reacciones de Maillard y la transición vítrea. Controlar el estado amorfo y la actividad del agua retrasa la recristalización y la pérdida de textura, mientras que el exceso de humedad y la luz aceleran el deterioro. Los envases de alta barrera y las reformulaciones con alcoholes de azúcar, fibras e ingredientes vegetales mejoran la estabilidad, aportando opciones más saludables y sostenibles sin comprometer la calidad sensorial.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
[1] Odinaev M, Akhmedov S, Djalilov N, Ganiev S, Kurbanov F. Preparation of fruit products and analysis of their chemical and organoleptic assessment. E3S Web Conf 2023;389:03035. https://doi.org/10.1051/e3sconf/202338903035.
[2] Bolkvadze N, Gvidani S, Uridia R, Tserodze N, Kavtaradze N, Tatiashvili L, et al. Formation of taste and aroma compounds by Maillard reaction during processing of food products. GEORGIAN Sci 2024. https://doi.org/10.52340/gs.2024.06.01.14.
[3] Geng Y. Mechanism and Examples of Maillard Reaction. Int J Food Sci Agric 2024;8:54–8. https://doi.org/10.26855/ijfsa.2024.03.008.
[4] Dewi YSK, Putri DM, Fadly D, Rahmalia W. Innovation of Goat’s Milk Soft Candy with Annatto Extract (bixa orellana l.) As Natural Colorant and Antioxidant. Indones Food Sci Technol J 2023;7:9–16. https://doi.org/10.22437/ifstj.v7i1.29836.
[5] Luo W, Tappi S, Wang C, Yu Y, Zhu S, Rocculi P. Study and optimization of high hydrostatic pressure (HHP) to improve mass transfer and quality characteristics of candied green plums ( Prunus mume ): XXXX. J Food Process Preserv 2018;42:e13769. https://doi.org/10.1111/jfpp.13769.
[6] Mariana RU, Al Alif FJ, Kristiana RD, Muflihati I, Suhendriani S. Study on Making Jelly Candy from the Melon Rind. TEKNOBUGA J Teknol Busana Dan Boga 2023;11:1–7. https://doi.org/10.15294/teknobuga.v11i1.34564.
[7] Renumarn P, Choosuk N. Influence of Packaging and Storage Conditions on the Quality and Shelf-life of Chewy Santol (Kraton-Yee) Candies. E3S Web Conf 2020;141:02002. https://doi.org/10.1051/e3sconf/202014102002.
[8] Zavorokhina N, Shamilov S, Chugunova O, Tarasov A. Increasing the Storage Capacity of Chocolates by Reducing the Activity of Water in Ganache Fillings. Bull KSAU 2024;0:188–97. https://doi.org/10.36718/1819-4036-2024-6-188-197.
[9] Chughtaia MF, Hayat I, Rafiqu N, Rafiq S, Qayyum S, Rashid Siddiqui N. Effect of Sugar Concentrations on the Shelf Life of Pear Candies. Jammu Kashmir J Agric 2023;2:25–31. https://doi.org/10.56810/jkjagri.002.01.0025.
[10] Kondratiev NB, Osipov MV, Kazantsev EV, Bazhenova AE. Use of thickeners to reduce the rate of moisture migration during storage of candies with whipped bodies. Agrar Sci 2025:158–64. https://doi.org/10.32634/0869-8155-2025-398-09-158-164.
[11] Efe N, Dawson P. A Review: Sugar-Based Confectionery and the Importance of Ingredients. Eur J Agric Food Sci 2022;4:1–8. https://doi.org/10.24018/ejfood.2022.4.5.552.
[12] Maringka CT, Lo D, Indrawanto R. Sucrose and glucose reduction using fructo-oligosaccharides and xylitol in pectin jelly candy. BIO Web Conf 2024;98:06002. https://doi.org/10.1051/bioconf/20249806002.
[13] Spanemberg FEM, Korzenowski AL, Sellitto MA. Effects of sugar composition on shelf life of hard candy: Optimization study using D‐optimal mixture design of experiments. J Food Process Eng 2019;42:e13213. https://doi.org/10.1111/jfpe.13213.
[14] Netramai S, Kijchavengkul T, Sompoo P, Kungnimit W. The effect of intrinsic and extrinsic factors on moisture sorption characteristics of hard candy. J Food Process Preserv 2018;42:e13599. https://doi.org/10.1111/jfpp.13599.
[15] Ozel B, Berk B, Uguz SS, Grunin L, Oztop MH. Correlation of low field nuclear magnetic resonance relaxation with composition and glass transition of hard candies. Front Food Sci Technol 2024;4:1263380. https://doi.org/10.3389/frfst.2024.1263380.
[16] Souiy Z, Amri Z, Sharif H, Souiy A, Cheraief I, Hamden K, et al. The Use of D-Optimal Mixture Design in Optimizing Formulation of a Nutraceutical Hard Candy. Int J Food Sci 2023;2023:1–12. https://doi.org/10.1155/2023/7510452.
[17] Kuzu S, Ozel B, Uguz SS, Dogdu S, Marangoz MA, Grunin L, et al. Investigating the crystallinity of hard candies prepared and stored at different temperatures with low field‐ NMR relaxometry. J Sci Food Agric 2025;105:489–97. https://doi.org/10.1002/jsfa.13847.
[18] Nguyen TBK, Cao HKN, Nguyen TDLH, Doan TPD, Phan TD, Le MT, et al. Improvement of gummy candy structure by gelling ingredients and cooling temperature. Vietnam J Chem 2025;63:126–37. https://doi.org/10.1002/vjch.202400211.
[19] Dhawan K, Rasane P, Singh J, Kaur S, Kaur D, Avinashe H, et al. Effect of Spice Incorporation on Sensory and Physico-chemical Properties of Matcha-Based Hard Candy. ACS Omega 2023;8:29247–52. https://doi.org/10.1021/acsomega.3c02574.
[20] Wang J, Li Z, Chen Q, Ding K, Zhu T, Ni C. Detection and Classification of Defective Hard Candies Based on Image Processing and Convolutional Neural Networks. Electronics 2021;10:2017. https://doi.org/10.3390/electronics10162017.
[21] Qi NA, Hasnan NZN, Universiti Putra Malaysia, Basha RK, Universiti Putra Malaysia, Alyas ND, et al. Physicochemical Properties, Bioactive Compounds Degradation Kinetics, and Microbiological Counts of Fortified Pomegranate Gummy Candy (GC) during Ambient Storage. Ind J Teknol Dan Manaj Agroindustri 2023;12:103–17. https://doi.org/10.21776/ub.industria.2023.012.02.1.
[22] Silva ISO, Viana EDS, Soares SE, Chaves RS, Reis RC. Development and characterization of green banana-based fondant icing. Ciênc E Agrotecnologia 2021;45:e011221. https://doi.org/10.1590/1413-7054202145011221.
[23] Baranova Z, Nikonovich S, Tarasenko N, Baranova E, Kucherova S. New fat ingredients in confectionary for a healthy diet. E3S Web Conf 2021;296:07002. https://doi.org/10.1051/e3sconf/202129607002.
[24] Chystiukhina AO. Research of New Trends in the Confectionery Business. Bus Inf 2024;9:260–6. https://doi.org/10.32983/2222-4459-2024-9-260-266.
[25] Kobets A, Puhach A, Volovyk I, Puhach V. Features of structural improvement of the cooking appliance for confectionery mass. East-Eur J Enterp Technol 2024;1:81–8. https://doi.org/10.15587/1729-4061.2024.297409.
[26] Duarte R, Zurita R, Rojas M, Robalino j. Arte y ciencia en Caramelo. IV Semin. Int. Gastron. Libro Mem., Facultad de Salud Pública de la Escuela Superior Politécnica de Chimboraz; 2019.
[27] Obas F-L, Wang M, Thomas LC, Schmidt SJ. Characterization of the glass transition of commercial confections selected from each sugar cooking stage. J Food Meas Charact 2024;18:6156–77. https://doi.org/10.1007/s11694-024-02637-0.
[28] Thorat AA, Forny L, Meunier V, Taylor LS, Mauer LJ. Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose–Salt Blends. J Agric Food Chem 2017;65:11259–72. https://doi.org/10.1021/acs.jafc.7b04746.
[29] Voelker AL, Verbeek G, Taylor LS, Mauer LJ. Effects of emulsifiers on the moisture sorption and crystallization of amorphous sucrose lyophiles. Food Chem X 2019;3:100050. https://doi.org/10.1016/j.fochx.2019.100050.
[30] Borji A, Borji F-E, Jourani A. Sugar Industry: Effect of Dextran Concentrations on the Sucrose Crystallization in Aqueous Solutions. J Eng 2019;2019:1–6. https://doi.org/10.1155/2019/7987369.
[31] Jawad R, Elleman C, Martin GP, Royall PG. Crystallisation of freeze-dried sucrose in model mixtures that represent the amorphous sugar matrices present in confectionery. Food Funct 2018;9:4621–34. https://doi.org/10.1039/C8FO00729B.
[32] Voelker AL, Felten C, Taylor LS, Mauer LJ. Effects of polyphenols on crystallization of amorphous sucrose lyophiles. Food Chem 2021;338:128061. https://doi.org/10.1016/j.foodchem.2020.128061.
[33] Khawas P, Deka SC. Encapsulation of Natural Antioxidant Compounds from Culinary Banana by Cocrystallization: ENCAPSULATION OF NATURAL ANTIOXIDANT COMPOUNDS. J Food Process Preserv 2017;41:e13033. https://doi.org/10.1111/jfpp.13033.
[34] Verma P, Shah NG, Mahajani SM. A Novel Technique to Characterize and Quantify Crystalline and Amorphous Matter in Complex Sugar Mixtures. Food Anal Methods 2020;13:2087–101. https://doi.org/10.1007/s12161-020-01789-1.
[35] Bashari M, Lagnika C, Ammar A, H. Abdalhai M, Balla Mustafa A. Impact of Dextran Biodegradation Catalyzed by Dextranase Enzyme on the Crystallization Rate of Sucrose during Sugar Manufacturing. J Food Nutr Res 2019;7:402–8. https://doi.org/10.12691/jfnr-7-5-10.
[36] O’Connell K, Hartel RW. The effects of corn syrup, water content and sucrose replacers on sucrose crystallization in starch jellies. J Food Process Preserv 2022;46. https://doi.org/10.1111/jfpp.16456.
[37] Thorat AA, Forny L, Meunier V, Taylor LS, Mauer LJ. Effects of Mono‐, Di‐, and Tri‐Saccharides on the Stability and Crystallization of Amorphous Sucrose. J Food Sci 2018;83:2827–39. https://doi.org/10.1111/1750-3841.14357.
[38] Miller E, Hartel RW. Sucrose crystallization in caramel. J Food Eng 2015;153:28–38. https://doi.org/10.1016/j.jfoodeng.2014.11.028.
[39] Toker OS, Atalar I, Kurt A, Palabiyik I, Konar N. Red Beet Extract Powder, Gelatin and Sucrose Interactions in Gummy Candies. Foods 2025;14:3138. https://doi.org/10.3390/foods14173138.
[40] Chezanoglou E, Goula AM. Properties and Stability of Encapsulated Pomegranate Peel Extract Prepared by Co-Crystallization. Appl Sci 2023;13:8680. https://doi.org/10.3390/app13158680.
[41] Irigoiti Y, Yamul DK, Navarro AS. Co-crystallized sucrose with propolis extract as a food ingredient: Powder characterization and antioxidant stability. LWT 2021;143:111164. https://doi.org/10.1016/j.lwt.2021.111164.
[42] Mosquera LFG, Giraldo SA, Jiménez DG, Velasco DML, Alturo AO. Transición vítrea en alimentos: sistemas binarios agua-carbohidratos 2014.
[43] Ozel B, Kuzu S, Marangoz MA, Dogdu S, Morris RH, Oztop MH. Hard Candy Production and Quality Parameters: A review. Open Res Eur 2024;4:60. https://doi.org/10.12688/openreseurope.16792.1.
[44] Baysan U, Elmas F, Koç M. The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. J Food Process Eng 2019;42:e13024. https://doi.org/10.1111/jfpe.13024.
[45] Zäh M, Brandenbusch C, Groël S, Winter G, Sadowski G. Water Activity as an Indicator for Antibody Storage Stability in Lyophilized Formulations. Mol Pharm 2025;22:918–26. https://doi.org/10.1021/acs.molpharmaceut.4c01106.
[46] Bogdanova E, Lages S, Phan-Xuan T, Kamal MdA, Terry A, Millqvist Fureby A, et al. Lysozyme–Sucrose Interactions in the Solid State: Glass Transition, Denaturation, and the Effect of Residual Water. Mol Pharm 2023;20:4664–75. https://doi.org/10.1021/acs.molpharmaceut.3c00403.
[47] Nurhadi B, Sukri N, Sugandi WK, Widanti AP, Restiani R, Noflianrini Z, et al. Comparison of crystallized coconut sugar produced by traditional method and amorphous coconut sugar formed by two drying methods: vacuum drying and spray drying. Int J Food Prop 2018;21:2339–54. https://doi.org/10.1080/10942912.2018.1517781.
[48] Salamanca-Grosso G, Tapiero-Cuellar JL. Humedad crítica, transición vítrea, y propiedades cromáticas de confites duros enriquecidos con aceite esencial de eucalipto y tintura de Hibiscus sabdariffa L. Rev Colomb Investig Agroindustriales 2022;10:13–25. https://doi.org/10.23850/24220582.5212.
[49] Roos YH. Glass Transition and Re-Crystallization Phenomena of Frozen Materials and Their Effect on Frozen Food Quality. Foods 2021;10:447. https://doi.org/10.3390/foods10020447.
[50] Rusli AA, Mohamad NJ, Mahmood A, Ibrahim NH. Characterisation of vacuum dried honey-sugar powder as affected by drying temperature and sugar carrier ratio for further application in chocolate. Int Food Res J 2024;31:352–67. https://doi.org/10.47836/ifrj.31.2.07.
[51] Nole MC. Determinación de la vida en anaquel de caramelos depositados (caramelos duros) mediante pruebas aceleradas y de campo. Tesis de Ingeniería. Universidad Nacional Agraria La Molina, 2024.
[52] Mendenhall H, Hartel RW. Effects of Fat Content and Solid Fat Content on Caramel Texture Attributes. J Am Oil Chem Soc 2016;93:1191–9. https://doi.org/10.1007/s11746-016-2871-0.
[53] Miah JH, Griffiths A, McNeill R, Halvorson S, Schenker U, Espinoza-Orias ND, et al. Environmental management of confectionery products: Life cycle impacts and improvement strategies. J Clean Prod 2018;177:732–51. https://doi.org/10.1016/j.jclepro.2017.12.073.
[54] Nita N, Rahmayanti Ramli A, Tri Hadi Wibowo Budiardjo G, Muhpidah M. Effect of packaging type on the quality of red ginger soft-candy. BIO Web Conf 2024;96:01033. https://doi.org/10.1051/bioconf/20249601033.
[55] Sarkar P, Bhattacharjee P, Das B. Development of an Antioxidant-Rich Sugar-Free Plantain Candy and Assessment of Its Shelf Life in a Flexible Laminate. Food Technol Biotechnol 2024;62:162–76. https://doi.org/10.17113/ftb.62.02.24.8141.
[56] Kawai K, Uneyama I, Ratanasumawong S, Hagura Y, Fukami K. Effect of Calcium Maltobionate on the Glass Transition Temperature of Model and Hand-made Hard Candies. J Appl Glycosci 2019;66:89–96. https://doi.org/10.5458/jag.jag.JAG-2019_0005.
[57] Ghodsi S, Nouri M. Vegan gummy candies with low calorie based on celery ( Apium graveolens ) puree and boswellia gum ( Boswellia thurifera ). Food Sci Nutr 2024;12:5785–98. https://doi.org/10.1002/fsn3.4190.
[58] Jeon Y, Oh J, Cho MS. Formulation Optimization of Sucrose-Free Hard Candy Fortified with Cudrania tricuspidata Extract. Foods 2021;10:2464. https://doi.org/10.3390/foods10102464.
[59] Hartel RW, Von Elbe JH, Hofberger R. Hard Candy. Confect. Sci. Technol., Cham: Springer International Publishing; 2018, p. 211–44. https://doi.org/10.1007/978-3-319-61742-8_8.
[60] Brand H, Gambon D, Van Dop L, Van Liere L, Veerman E. The erosive potential of jawbreakers, a type of hard candy. Int J Dent Hyg 2010;8:308–12. https://doi.org/10.1111/j.1601-5037.2010.00450.x.
[61] Reinheimer MA, Mussati S, Scenna NJ. Influence of product composition and operating conditions on the unsteady behavior of hard candy cooling process. J Food Eng 2010;101:409–16. https://doi.org/10.1016/j.jfoodeng.2010.07.029.
[62] Cohen M, Hartel R. Candy Texture (Sugar Confectionery). In: Rosenthal A, Chen J, editors. Food Texturology Meas. Percept. Food Textural Prop., Cham: Springer International Publishing; 2024, p. 373–91. https://doi.org/10.1007/978-3-031-41900-3_18.
[63] Altan I, Charbonneau P, Valicourt J de. Sugars: Soft Caramel and Sucre à la Crème – an Undergraduate Experiment about Sugar Crystallization. Handb. Mol. Gastron., CRC Press; 2021.
[64] Dinde AB, Joshi PS, Tayade SA, Bondre SV. Evaluation of chemical changes in karonda candy during storage at ambient temperature. ASIAN J Hortic 2020;15:26–33. https://doi.org/10.15740/HAS/TAJH/15.2/26-33.
[65] Hadi SR, Prasad VM, Singh YKr. Study and Quality Evaluation of Candy Prepared by Using Ash Gourd (Benincasa hispida). Int J Environ Clim Change 2022:529–36. https://doi.org/10.9734/ijecc/2022/v12i121490.
[66] Subramaniam P. The Stability and Shelf Life of Confectionery Products. Stab. Shelf Life Food, Elsevier; 2016, p. 545–73. https://doi.org/10.1016/B978-0-08-100435-7.00019-8.
[67] Ergun R, Lietha R, Hartel RW. Moisture and Shelf Life in Sugar Confections. Crit Rev Food Sci Nutr 2010;50:162–92. https://doi.org/10.1080/10408390802248833.
[68] Bayline JL, Tucci HM, Miller DW, Roderick KD, Brletic PA. Chemistry of Candy: A Sweet Approach to Teaching Nonscience Majors. J Chem Educ 2018;95:1307–15. https://doi.org/10.1021/acs.jchemed.7b00739.
[69] Pratama MuhD, Palupi PJ, Prasetia R, Muhtar M. Karakteristik Fisikokimia dan Mikrobiologi Permen Jeli Jahe (Zingiber officinale) terhadap Daya Simpan dengan Teknik Pengemasan Berbeda. J Teknol Agro-Ind 2021;8:11–24. https://doi.org/10.34128/jtai.v8i1.129.
[70] Raajeswari P, Manivel D, Dhanapal ACTA, Menkinoska M, Pavlovska G, Helal M, et al. Sustainable biodegradable tapioca starch films enhanced with basil oil, carboxymethyl cellulose, and citric acid for functional food packaging applications. Front Sustain Food Syst 2025;9:1610769. https://doi.org/10.3389/fsufs.2025.1610769.
[71] Basha SJ, Kaur K, Kumar V, Kaur P, Rehal J. Effect of pre‐treatments on quality and storage stability of turmeric rhizome candy. Int J Food Sci Technol 2024;59:1653–63. https://doi.org/10.1111/ijfs.16919.
[72] Pekdogan Goztok S, Habibzadeh Khiabani A, Toker OS, Palabiyik I, Konar N. Development of healthier gummy candy by substituting glucose syrup with various fruit juice concentrates. Food Sci Nutr 2024;12:7864–76. https://doi.org/10.1002/fsn3.4389.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Christopher Jasiel Salazar-López, Laura García-Curiel, Jesús Guadalupe Pérez-Flores, Emmanuel Pérez-Escalante, Marisa Rivera-Arredondo, Juan Ramírez-Godínez, Nayeli Vélez-Rivera

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.









