Agentes acidulantes y reguladores de pH: Revisión narrativa en confitería y bebidas
DOI:
https://doi.org/10.29057/icea.v14iEspecial.16475Palabras clave:
Acidulantes, confitería, sensorialidad, fermentación, reguladoresResumen
La industria alimentaria busca desarrollar productos sensorialmente atractivos, estables y seguros, lo que impulsa el uso de acidulantes y reguladores de pH con propiedades tecnofuncionales. Este estudio revisó los principales compuestos acidulantes empleados en alimentos, destacando su origen, características fisicoquímicas, efectos sensoriales y aplicaciones tecnológicas, con énfasis en la confitería. Se integró información científica reciente para clasificarlos según su naturaleza química y métodos de producción, tanto convencionales como fermentativos. Se analizó el impacto de ácidos orgánicos sobre sabor, textura y sinergia con edulcorantes y gelificantes. También se abordaron aspectos regulatorios y sostenibles. En conclusión, los acidulantes son componentes clave para modular propiedades organolépticas y tecnológicas, optimizando la formulación y aceptación de productos de confitería.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
[1] Abu-Reidah IM. Chapter 1 - Carbonated Beverages. In: Galanakis CM, editor. Trends Non-Alcohol. Beverages, Academic press; 2020, p. 1–36. https://doi.org/10.1016/B978-0-12-816938-4.00001-X.
[2] Barboza GR, Almeida JMD, Silva NCC. Use of natural substrates as an alternative for the prevention of microbial contamination in the food industry. Food Sci Technol 2022;42:e05720. https://doi.org/10.1590/fst.05720.
[3] Pourfarzad A, Habibi‐Najafi MB. Optimization of a Liquid Improver for Barbari Bread: Staling Kinetics and Relationship of Texture with Dough Rheology and Image Characteristics. J Texture Stud 2012;43:484–93. https://doi.org/10.1111/j.1745-4603.2012.00362.x.
[4] Reddy K, Sivapriya TVS, Kumar UA, Ramalingam C. Optimization of food acidulant to enhance the organoleptic property in fruit jellies. | Abstract 2016;7. https://doi.org/10.4172/2157-7110.1000635.
[5] Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, et al. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020;19:184–217. https://doi.org/10.1111/1541-4337.12520.
[6] Zhang X, Zhou T, Zhang L, Fung KY, Ng KM. Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach. Ind Eng Chem Res 2019;58:16743–52. https://doi.org/10.1021/acs.iecr.9b02462.
[7] Da Conceicao ER, Johanningsmeier SD, McFeeters RF. The Chemistry and Physiology of Sour Taste—A Review. J Food Sci 2007;72. https://doi.org/10.1111/j.1750-3841.2007.00282.x.
[8] Deshmukh G, Manyar H, Deshmukh G, Manyar H. Production Pathways of Acetic Acid and Its Versatile Applications in the Food Industry. Biotechnol. Appl. Biomass, IntechOpen; 2020. https://doi.org/10.5772/intechopen.92289.
[9] Abd-Alsaheb RA, Mohammed MM, Abdullah JK, Abbas AH. Citric Acid Production: Raw Material, Microbial Production, Fermentation Strategy and Global Market: Critical Review. Al-Khwarizmi Eng J 2023;19:1–14. https://doi.org/10.22153/kej.2023.12.002.
[10] Murtaza MA, Rehman SU, Anjum FM, Huma N, Tarar OM, Mueen-Ud-Din G. ORGANIC ACID CONTENTS OF BUFFALO MILK CHEDDAR CHEESE AS INFLUENCED BY ACCELERATED RIPENING AND SODIUM SALT: BUFFALO MILK CHEDDAR CHEESE. J Food Biochem 2012;36:99–106. https://doi.org/10.1111/j.1745-4514.2010.00517.x.
[11] Yang F, Chen L, Liu Y, Li J, Wang L, Chen J. Identification of microorganisms producing lactic acid during solid-state fermentation of Maotai flavour liquor: Lactic acid production in the Maotai brewing process. J Inst Brew 2019;125:171–7. https://doi.org/10.1002/jib.537.
[12] Silva LM da, Paula KCSE de, Fausta KY. Aditivos Alimentares. Essentia Editora Iffluminense; 2021.
[13] Hassaan MS, Soltan MA, Jarmołowicz S, Abdo HS. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia ( Oreochromis niloticus ). Aquac Nutr 2018;24:83–93. https://doi.org/10.1111/anu.12536.
[14] Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, et al. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024;48:fuad062. https://doi.org/10.1093/femsre/fuad062.
[15] Calder BL, Kash EA, Davis‐Dentici K, Bushway AA. Comparison of Sodium Acid Sulfate to Citric Acid to Inhibit Browning of Fresh‐Cut Potatoes. J Food Sci 2011;76. https://doi.org/10.1111/j.1750-3841.2011.02082.x.
[16] Mosneaguta R, Alvarez V, Barringer SA. The Effect of Antibrowning Agents on Inhibition of Potato Browning, Volatile Organic Compound Profile, and Microbial Inhibition. J Food Sci 2012;77. https://doi.org/10.1111/j.1750-3841.2012.02957.x.
[17] Reineke K, Mathys A, Knorr D. Shift of pH-Value During Thermal Treatments in Buffer Solutions and Selected Foods. Int J Food Prop 2011;14:870–81. https://doi.org/10.1080/10942910903456978.
[18] Suganthi S, Mohanapriya S, Raj V, Kanaga S, Dhandapani R, Vignesh S, et al. Tunable Physicochemical and Bactericidal Activity of Multicarboxylic‐Acids‐Crosslinked Polyvinyl Alcohol Membrane for Food Packaging Applications. ChemistrySelect 2018;3:11167–76. https://doi.org/10.1002/slct.201801851.
[19] González-Otamendi MDJ, Pérez-Flores JG, Contreras-López E, Soto-Vega K, García-Curiel L, Pérez-Escalante E, et al. Uso de Polioles en la Industria de la Confitería. Cienc Lat Rev Científica Multidiscip 2024;8:499–528. https://doi.org/10.37811/cl_rcm.v8i3.11259.
[20] Kraftchemical. Acidulants 2020. https://www.kraftchemical.com/wp-content/uploads/2020/05/AcidulantsCitric-Malic-Fumaric-etc.pdf (accessed August 2, 2024).
[21] San Agustin Fragoso BY, García Curiel L, Pérez Flores JG, Contreras López E, Pérez Escalante E, Portillo Torres LA, et al. Gomitas: Revisión de sus Ingredientes, Proceso de Elaboración, Estabilidad, Vida Útil y Tendencias del Mercado. Cienc Lat Rev Científica Multidiscip 2024;8:7512–43. https://doi.org/10.37811/cl_rcm.v8i5.14164.
[22] Franceschini B, Previdi MP, Schianchi I. Food Spoilage by Bacilli: Combined Effects of pH, aw and Storage Temperature on Spore Germination and Growth in Cultural Broth Added with Solutes and Organic Acids. J Adv Microbiol 2020:49–55. https://doi.org/10.9734/jamb/2020/v20i330227.
[23] Camesasca L, De Mattos JA, Vila E, Cebreiros F, Lareo C. Lactic acid production by Carnobacterium sp. isolated from a maritime Antarctic lake using eucalyptus enzymatic hydrolysate. Biotechnol Rep 2021;31:e00643. https://doi.org/10.1016/j.btre.2021.e00643.
[24] Cubas‐Cano E, González‐Fernández C, Ballesteros M, Tomás‐Pejó E. Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate. Biofuels Bioprod Biorefining 2018;12:290–303. https://doi.org/10.1002/bbb.1852.
[25] Goto S, Motomura A, Kawahara A, Shiratsuchi H, Tanaka K, Matsusaki H. Cloning and Heterologous Expression of Lactate Dehydrogenase Genes from Acid-Tolerant Lactobacillus acetotolerans HT. Food Sci Technol Res 2018;24:861–8. https://doi.org/10.3136/fstr.24.861.
[26] Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front Microbiol 2016;7. https://doi.org/10.3389/fmicb.2016.01218.
[27] Silano V, Barat Baviera JM, Bolognesi C, Brüschweiler BJ, Chesson A, Cocconcelli PS, et al. Evaluation of the safety and efficacy of the organic acids lactic and acetic acids to reduce microbiological surface contamination on pork carcasses and pork cuts. EFSA J 2018;16. https://doi.org/10.2903/j.efsa.2018.5482.
[28] Börekçi BS, Kaban G, Kaya M. Citric Acid Production of Yeasts: An Overview. EuroBiotech J 2021;5:79–91. https://doi.org/10.2478/ebtj-2021-0012.
[29] Schmitt V, Derenbach L, Ochsenreither K. Enhanced l-Malic Acid Production by Aspergillus oryzae DSM 1863 Using Repeated-Batch Cultivation. Front Bioeng Biotechnol 2022;9:760500. https://doi.org/10.3389/fbioe.2021.760500.
[30] El-Hadary AM, Hauka FIA, Selim MAE. Citric Acid Production by Aspergillus flavus Using Sugarcane Bagasse Via Solid-State Fermentation. J Agric Chem Biotechnol 2022;13:123–8.
[31] Fernández-Vázquez D, Rozès N, Canals JM, Bordons A, Reguant C, Zamora F. New enzymatic method for estimating fumaric acid in wines. OENO One 2021;55:273–81. https://doi.org/10.20870/oeno-one.2021.55.3.4825.
[32] Hong SK, Lee HJ, Park HJ, Hong YA, Rhee IK, Lee WH, et al. Degradation of malic acid in wine by immobilized Issatchenkia orientalis cells with oriental oak charcoal and alginate. Lett Appl Microbiol 2010;50:522–9. https://doi.org/10.1111/j.1472-765X.2010.02833.x.
[33] Inyang V, Lokhat D. Reactive Extraction of Malic Acid using Trioctylamine in 1–Decanol: Equilibrium Studies by Response Surface Methodology Using Box Behnken Optimization Technique. Sci Rep 2020;10:2400. https://doi.org/10.1038/s41598-020-59273-z.
[34] West T. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass. Fermentation 2017;3:14. https://doi.org/10.3390/fermentation3020014.
[35] Zou X, Zhou Y, Yang S. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng 2013;110:2105–13. https://doi.org/10.1002/bit.24876.
[36] Leibar U, Pascual I, Morales F, Aizpurua A, Unamunzaga O. Grape yield and quality responses to simulated year 2100 expected climatic conditions under different soil textures. J Sci Food Agric 2017;97:2633–40. https://doi.org/10.1002/jsfa.8086.
[37] Scutarașu EC, Teliban IV, Zamfir CI, Luchian CE, Colibaba LC, Niculaua M, et al. Effect of Different Winemaking Conditions on Organic Acids Compounds of White Wines. Foods 2021;10:2569. https://doi.org/10.3390/foods10112569.
[38] Wasewar KL, Shende D, Keshav A. Reactive Extraction of Itaconic Acid Using Quaternary Amine Aliquat 336 in Ethyl Acetate, Toluene, Hexane, and Kerosene. Ind Eng Chem Res 2011;50:1003–11. https://doi.org/10.1021/ie1011883.
[39] Chaudhary M, Pinto S, Paul P, Yashvantha R. Shelf Life Studies of Reduced-Fat Paneer Prepared Using GDL as an Acidulant. Int J Curr Microbiol Appl Sci 2019;8:1918–33. https://doi.org/10.20546/ijcmas.2019.806.230.
[40] Chaudhary M, Pinto S, Dharaiya C, Paul P. Preparation of low-fat paneer using Glucono delta-lactone as an acidulant. Indian J Dairy Sci 2021;74:30–8. https://doi.org/10.33785/IJDS.2021.v74i01.004.
[41] Sylchuk T, Bilyk O, Kovbasa V, Zuiko V. Investigation of the effect of multicomponent acidulants on the preservation of freshness and aroma of rye-wheat bread. East-Eur J Enterp Technol 2017;5:4–9. https://doi.org/10.15587/1729-4061.2017.110154.
[42] Seth K, Bajwa U. Effect of acidulants on the recovery of milk constituents and quality of Mozzarella processed cheese. J Food Sci Technol 2015;52:1561–9. https://doi.org/10.1007/s13197-013-1176-7.
[43] Alvindia DG, Kobayashi T, Natsuaki KT, Tanda S. Inhibitory influence of inorganic salts on banana postharvest pathogens and preliminary application to control crown rot. J Gen Plant Pathol 2004;70:61–5. https://doi.org/10.1007/s10327-003-0084-5.
[44] Nilmini RK, Kodituwakku TD, Abeywickrama K, Kuruppu M. In vitro and in vivo Application of Eco-friendly Treatments to Control Postharvest Stem-end Rot of Naturally Infected Avocado (cv. Pollock). J Agric Sci – Sri Lanka 2021;16:283–99. https://doi.org/10.4038/jas.v16i2.9335.
[45] Steinhauser G. Cleaner production in the Solvay Process: general strategies and recent developments. J Clean Prod 2008;16:833–41. https://doi.org/10.1016/j.jclepro.2007.04.005.
[46] Sudibyo S, Suharto S, Rarasati SAA, Wulandari YR, Shintawati S, Rohman FS. Optimization of Sodium Bicarbonate Production from Ammonium Hydroxide Using a Froth Flotation Column. Chem Eng Technol 2022;45:1952–9. https://doi.org/10.1002/ceat.202200060.
[47] Jawandha SK, Gill PPS, Verma A, Kaur N. Physico-chemical and enzymatic changes in peach (Prunus persica (L.) Batsch) fruit in response to sodium salts during low temperature storage. J Appl Nat Sci 2016;8:2116–9. https://doi.org/10.31018/jans.v8i4.1100.
[48] Lee HJ, Li S, Gu K, Ryu D. Reduction of Ochratoxin A during the Preparation of Porridge with Sodium Bicarbonate and Fructose. Toxins 2021;13:224. https://doi.org/10.3390/toxins13030224.
[49] Kherici S, Benouali D, Benyetou M, Ghidossi R, Lacampagne S, Mietton-Peuchot M. Study of Potassium Hydrogen Tartrate Unseeded Batch Crystallization for Tracking Optimum Cooling Mode. Orient J Chem 2015;31:249–55. https://doi.org/10.13005/ojc/310127.
[50] Rusyniak DE, Durant PJ, Mowry JB, Johnson JA, Sanftleben JA, Smith JM. Life-Threatening Hyperkalemia from Cream of Tartar Ingestion. J Med Toxicol 2013;9:79–81. https://doi.org/10.1007/s13181-012-0255-x.
[51] Wegenast CA, Meadows ID, Anderson RE, Southard T, González Barrientos CR, Wismer TA. Acute kidney injury in dogs following ingestion of cream of tartar and tamarinds and the connection to tartaric acid as the proposed toxic principle in grapes and raisins. J Vet Emerg Crit Care 2022;32:812–6. https://doi.org/10.1111/vec.13234.
[52] Huq NA, Hafenstine GR, Huo X, Nguyen H, Tifft SM, Conklin DR, et al. Toward net-zero sustainable aviation fuel with wet waste–derived volatile fatty acids. Proc Natl Acad Sci 2021;118:e2023008118. https://doi.org/10.1073/pnas.2023008118.
[53] Hovorukha V, Havryliuk O, Gladka G, Tashyrev O, Kalinichenko A, Sporek M, et al. Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste. Energies 2021;14:1831. https://doi.org/10.3390/en14071831.
[54] Li R, Cui J, Li X, Li X. Phosphorus Removal and Recovery from Wastewater using Fe-Dosing Bioreactor and Cofermentation: Investigation by X-ray Absorption Near-Edge Structure Spectroscopy. Environ Sci Technol 2018;52:14119–28. https://doi.org/10.1021/acs.est.8b03355.
[55] Li M, Su J, Yang H, Feng L, Wang M, Xu G, et al. Grape tartaric acid: chemistry, function, metabolism, and regulation. Horticulturae 2023;9:1173. https://doi.org/10.3390/horticulturae9111173.
[56] Fitriana AR, Akbar AF, Bagastyo AY. The effect of fermentation process on increasing biodegradable organic waste reduction with Black Soldier Fly (BSF) larva bioconversion method. Sustinere J Environ Sustain 2023;7:81–90. https://doi.org/10.22515/sustinerejes.v7i1.336.
[57] Wong CY, Kiatkittipong K, Kiatkittipong W, Ntwampe SKO, Lam MK, Goh PS, et al. Black Soldier Fly Larval Valorization Benefitting from Ex-Situ Fungal Fermentation in Reducing Coconut Endosperm Waste. Processes 2021;9:275. https://doi.org/10.3390/pr9020275.
[58] Sulfa DM, Susanto H, Hasanah SM. The Exploration of Moringa Leaves’ Antibacterial in Biodegradable Detergent Production Through Application of Eco-enzyme Synthesis. E3S Web Conf 2024;481:06003. https://doi.org/10.1051/e3sconf/202448106003.
[59] Li J, Wang C, Zhang S, Xing J, Song C, Meng Q, et al. Anaerobic fermentation featuring wheat bran and rice bran realizes the clean transformation of Chinese cabbage waste into livestock feed. Front Microbiol 2023;14:1108047. https://doi.org/10.3389/fmicb.2023.1108047.
[60] Chávez RAM, Rangel JJV. Aditivos alimentarios: aspectos de regulación y seguridad. Milen Cienc Arte 2019:15–6. https://doi.org/10.35830/mcya.vi14.31.
[61] Xu B. Safety and Management of Food Additives in the United States. Adv Mater Res 2013;781–784:1328–31. https://doi.org/10.4028/www.scientific.net/AMR.781-784.1328.
[62] Chattopadhyay K, Xavier KAM, Ngasotter S, Karmakar S, Balange A, Nayak BB. Chitosan Gel Prepared with Citric Acid as the Food Acidulant: Effect of the Chitosan Concentration and Gel pH on Physicochemical and Functional Properties of Fish Protein Emulsion Sausages. ACS Omega 2023;8:7829–37. https://doi.org/10.1021/acsomega.2c07538.
[63] Gautam S, Platel K, Srinivasan K. Influence of combinations of promoter and inhibitor on the bioaccessibility of iron and zinc from food grains. Int J Food Sci Nutr 2011;62:826–34. https://doi.org/10.3109/09637486.2011.584861.
[64] Parrott N, Stillhart C, Lindenberg M, Wagner B, Kowalski K, Guerini E, et al. Physiologically Based Absorption Modelling to Explore the Impact of Food and Gastric pH Changes on the Pharmacokinetics of Entrectinib. AAPS J 2020;22:78. https://doi.org/10.1208/s12248-020-00463-y.
[65] Dhakal J, Aldrich CG. Application of Acidulants to Control Salmonella spp. in Rendered Animal Fats and Oils with Different Levels of Unsaturation. Animals 2023;13:1304. https://doi.org/10.3390/ani13081304.
[66] Pressman P, Clemens R, Hayes W, Reddy C. Food additive safety: A review of toxicologic and regulatory issues. Toxicol Res Appl 2017;1:2397847317723572. https://doi.org/10.1177/2397847317723572.
[67] CODEX STAN. Norma general para los aditivos alimentarios Codex Stan 192-1995. CODEX Aliment 1995. https://www.fao.org/gsfaonline/docs/CXS_192s.pdf (accessed July 31, 2024).
[68] Punia Bangar S, Suri S, Trif M, Ozogul F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci 2022;46:101615. https://doi.org/10.1016/j.fbio.2022.101615.
[69] Książek E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2024;29:22. https://doi.org/10.3390/molecules29010022.
[70] Balderrama-Martínez K, Mendoza-Montaño L, Ramírez-Vargas DA, Hernández-Pérez AD, Padilla-Viveros A. Producción de Ácido Cítrico en Cultivo Sumergido con Aspergillus niger. 01 2007;55:55.
[71] Rosas MB, Terán DF. Obtención de ácido cítrico a partir de melaza o cachaza, mediante fermentación utilizando cepa de *Aspergillus niger* ATCC 16888. Universidad Técnica del Norte, 2015.
[72] Kövilein A, Kubisch C, Cai L, Ochsenreither K. Malic acid production from renewables: a review. J Chem Technol Biotechnol 2020;95:513–26. https://doi.org/10.1002/jctb.6269.
[73] Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, et al. Re‐evaluation of l(+)‐tartaric acid (E 334), sodium tartrates (E 335), potassium tartrates (E 336), potassium sodium tartrate (E 337) and calcium tartrate (E 354) as food additives. EFSA J 2020;18:e06030. https://doi.org/10.2903/j.efsa.2020.6030.
[74] Bustos G, Velázquez G, Rangel E, Compeán E, Campos J. Aprovechamiento biotecnológico de productos agropecuarios II. Primera. Tamaulipas: Plaza y Valdés; 2008.
[75] Trejo MA, Pascual S, Vargas MG. Capítulo 8. Propuesta tecnológica para aprovechamiento de subproductos de la industria vitivinícola., 2022, p. 587.
[76] Carrasco SP. Implementación de un proceso biotecnológico para la obtención de ácido láctico a partir de suero de leche. Universidad Técnica del Norte, 2023.
[77] Roa Engel CA, Straathof AJJ, Zijlmans TW, van Gulik WM, van der Wielen LAM. Fumaric acid production by fermentation. Appl Microbiol Biotechnol 2008;78:379–89. https://doi.org/10.1007/s00253-007-1341-x.
[78] Novillo D. Evaluación de la producción de ácido fumárico mediante fermentación sumergida de bagazo de caña (Saccharum officinarum L.) utilizando Rhizopus sp. como biocatalizador. Universidad politecnica Salesiana del Ecuador, 2020.
[79] Ugarte R, Salgado G, Martinez R, Navarrete J. Estudio teórico de la isomerización del ácido maleico en ácido fumárico: un enfoque basado en el concepto de superficie de energía potencial. Quím Nova 2010;33:750–4. https://doi.org/10.1590/S0100-40422010000300048.
[80] Kherici S, Benouali D, Benyetou M. Recovery of Cream of Tartar from Winemaking Solid Waste by Cooling Crystallization Process. J Chem Eng Process Technol 2013;5:1–15. https://doi.org/10.4172/2157-7048.1000180.
[81] Kontogiannopoulos KN, Patsios SI, Karabelas AJ. Tartaric acid recovery from winery lees using cation exchange resin: Optimization by Response Surface Methodology. Sep Purif Technol 2016;165:32–41. https://doi.org/10.1016/j.seppur.2016.03.040.
[82] Calvo M. El mineral de los 14.000 usos. La utilización de la sal a lo largo de la historia. Rev Soc Esp Para Def Patrim Geológico Min 2017:5–24.
[83] Gómez, Sánchez NEO. Confitería: de lo artesanal a la tecnología. Universidad Autónoma de Aguascalientes; 2011.
[84] Herrera AM. Captura de CO2 y producción de bicarbonato de sodio. Universidad de Sevilla, 2020.
[85] Abd‐Elhakim YM, Anwar A, Hashem MM, Moustafa GG, Abo‐El‐Sooud K. Sodium Acetate, Sodium Acid Pyrophosphate, and Citric Acid Impacts on Isolated Peripheral Lymphocyte Viability, Proliferation, and DNA Damage. J Biochem Mol Toxicol 2018;32:e22171. https://doi.org/10.1002/jbt.22171.
[86] Mawouma S, Ponka R, Mbofung CM. Acceptability and solubility of iron and zinc contents of modified Moringa oleifera sauces consumed in the Far‐north region of Cameroon. Food Sci Nutr 2017;5:344–8. https://doi.org/10.1002/fsn3.398.
[87] Verma AK, Singh TP, Rajkumar V, Gururaj K, Singh M, Kushwah T. Physicochemical, colour, textural, rheological and sensory properties of goatmilk mozzarella cheeses as affected for acidulants. Indian J Dairy Sci 2023;76:458–65. https://doi.org/10.33785/IJDS.2023.v76i05.006.
[88] Hanum EAR, Yulistiani R, Sarofa U. Utilization of fruit extract as acidulant on physicochemical and sensory properties of cottage cheese with addition calcium chloride. AJARCDE Asian J Appl Res Community Dev Empower 2022;6:15–21. https://doi.org/10.29165/ajarcde.v6i2.95.
[89] Marques C, Sotiles AR, Farias FO, Oliveira G, Mitterer-Daltoé ML, Masson ML. Full physicochemical characterization of malic acid: Emphasis in the potential as food ingredient and application in pectin gels. Arab J Chem 2020;13:9118–29. https://doi.org/10.1016/j.arabjc.2020.10.036.
[90] Talib N, Mohamad NE, Yeap SK, Hussin Y, Aziz MNM, Masarudin MJ, et al. Isolation and Characterization of Lactobacillus spp. from Kefir Samples in Malaysia. Molecules 2019;24:2606. https://doi.org/10.3390/molecules24142606.
[91] Zhao Y, Suyama T, Wu Z, Zhang W. Characterization of variations and correlations between flavor metabolites and microbial communities of industrial paocai brine during fermentation. J Food Process Preserv 2022;46. https://doi.org/10.1111/jfpp.16859.
[92] Wang R, Qiao L, Wang J, Wang J, Zhang N, Chen H, et al. Effect of Different Vegetable Oils on the Flavor of Fried Green Onion (Allium fistulosum L.) Oil. Foods 2023;12:1442. https://doi.org/10.3390/foods12071442.
[93] Chávez-Reyes L, García-Curiel L, Pérez Flores JG, Pérez-Escalante E, Contreras-López E, Portillo-Torres LA, et al. Optimization of sourness and flavor in orange-flavored gummy candies using a simplex-lattice mixture design implemented with R. ACI Av En Cienc E Ing 2025;17. https://doi.org/10.18272/aci.v17i1.3414.
[94] Chidi BS, Bauer FF, Rossouw D. Organic Acid Metabolism and the Impact of Fermentation Practices on Wine Acidity: A Review. South Afr J Enol Vitic 2018;39. https://doi.org/10.21548/39-2-3172.
[95] Rocha RAR, Cruz MADD, Silva LCF, Costa GXR, Amaral LR, Bertarini PLL, et al. Evaluation of Arabica Coffee Fermentation Using Machine Learning. Foods 2024;13:454. https://doi.org/10.3390/foods13030454.
[96] Xiang W, Xu Q, Zhang N, Rao Y, Zhu L, Zhang Q. Mucor indicus and Rhizopus oryzae co‐culture to improve the flavor of Chinese turbid rice wine. J Sci Food Agric 2019;99:5577–85. https://doi.org/10.1002/jsfa.9831.
[97] Zhou Y, Chao Y, Huang C, Li X, Yi Z, Zhu Z, et al. Influence of Lactiplantibacillus plantarum and Saccharomyces cerevisiae Individual and Collaborative Inoculation on Flavor Characteristics of Rose Fermented Beverage. Foods 2025;14:1868. https://doi.org/10.3390/foods14111868.
[98] Lee B-H, Huang C-H, Liu T-Y, Liou J-S, Hou C-Y, Hsu W-H. Microbial Diversity of Anaerobic-Fermented Coffee and Potential for Inhibiting Ochratoxin-Produced Aspergillus niger. Foods 2023;12:2967. https://doi.org/10.3390/foods12152967.
[99] Hartel RW, Hartel A. Candy Bites: The Science of Sweets. New York, NY: Springer New York; 2014. https://doi.org/10.1007/978-1-4614-9383-9.
[100] Marques C, Sotiles AR, Oliveira Farias F, Oliveira G, Mitterer-Daltoé ML, Masson ML. Full physicochemical characterization of malic acid: Emphasis in the potential as food ingredient and application in pectin gels - ScienceDirect. Arab J Chem 2020;13:9118–29. https://doi.org/10.1016/j.arabjc.2020.10.036.
[101] Abu-Reidah A-RIM. Trends in Non-alcoholic Beverages. Elsevier; 2020.
[102] Cruz-Enriquez JA, García-Curiel L, Pérez-Flores JG, Contreras-López E, Pérez-Escalante E, Soto-Vega K, et al. Lemon-Flavored Gummy Candies: Sourness, Flavor and Overall Acceptance Optimization Using Lattice-Simplex Mixture Design Implemented with Python Programming Language. 5th Int. Electron. Conf. Foods, MDPI; 2025, p. 41. https://doi.org/10.3390/blsf2024040041.
[103] Andrés-Bello A, Barreto-Palacios V, García-Segovia P, Mir-Bel J, Martínez-Monzó J. Effect of pH on Color and Texture of Food Products. Food Eng Rev 2013;5:158–70. https://doi.org/10.1007/s12393-013-9067-2.
[104] Lesmayati S, Qomariah R, Awanis, Anggreany S. Effect of gelatin and citric acid concentration on chemical and organoleptic properties of jelly citrus. IOP Conf Ser Earth Environ Sci 2022;1024:012025. https://doi.org/10.1088/1755-1315/1024/1/012025.
[105] Ojeda J. C, Vasquez V. G. Aplicación de ácidos orgánicos en la reducción de microorganismos aerobios mesófilos y, coliformes totales y fecales en canales de bovinos 2009.
[106] Gérard V, Ay E, Morlet-Savary F, Graff B, Galopin C, Ogren T, et al. Thermal and Photochemical Stability of Anthocyanins from Black Carrot, Grape Juice, and Purple Sweet Potato in Model Beverages in the Presence of Ascorbic Acid. J Agric Food Chem 2019;67:5647–60. https://doi.org/10.1021/acs.jafc.9b01672.
[107] Kopjar M, Jakšić K, Piližota V. INFLUENCE OF SUGARS AND CHLOROGENIC ACID ADDITION ON ANTHOCYANIN CONTENT, ANTIOXIDANT ACTIVITY AND COLOR OF BLACKBERRY JUICE DURING STORAGE: ANTHOCYANIN CONTENT OF BLACKBERRY JUICE. J Food Process Preserv 2012;36:545–52. https://doi.org/10.1111/j.1745-4549.2011.00631.x.
[108] Sipahli S, Mohanlall V, Mellem JJ. Stability and degradation kinetics of crude anthocyanin extracts from H. sabdariffa. Food Sci Technol 2017;37:209–15. https://doi.org/10.1590/1678-457x.14216.
[109] Song H-N, Ji S-A, Park H-R, Kim H-H, Hogstrand C. Impact of Various Factors on Color Stability of Fresh Blueberry Juice during Storage. Prev Nutr Food Sci 2018;23:46–51. https://doi.org/10.3746/pnf.2018.23.1.46.
[110] Weerawatanakorn M, Wu J-C, Pan M-H, Ho C-T. Reactivity and stability of selected flavor compounds. J Food Drug Anal 2015;23:176–90. https://doi.org/10.1016/j.jfda.2015.02.001.
[111] Loubes MA, Flores SK, Tolaba MP. Effect of formulation on rice noodle quality: Selection of functional ingredients and optimization by mixture design. LWT - Food Sci Technol 2016;69:280–6. https://doi.org/10.1016/j.lwt.2016.01.055.
[112] Mendoza SM, Van Heugten E. Effects of dietary lipid sources on performance and apparent total tract digestibility of lipids and energy when fed to nursery pigs1. J Anim Sci 2014;92:627–36. https://doi.org/10.2527/jas.2013-6488.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Belen Madai Flores-Hernández, Jesús Guadalupe Pérez-Flores, Emmanuel Pérez-Escalante, Laura García-Curiel, Rita Paz-Samaniego, Juan Ramírez-Godínez, Nayeli Vélez-Rivera

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.









