El potencial del xoconostle en alimentos procesados: una revisión narrativa
DOI:
https://doi.org/10.29057/icea.v14iEspecial.16494Palabras clave:
Betalaínas, Polifenoles, Mucílago, Ultrafiltración, RecubrimientosResumen
La incorporación del xoconostle en alimentos procesados se ha limitado por la escasa evidencia sobre su composición y funcionalidad. Esta revisión sintetizó información sobre su perfil químico, propiedades fisicoquímicas y aplicaciones tecnológicas. Se identificaron estudios sobre composición, efectos del procesamiento y funcionalidad en bases de datos científicas, integrándose narrativamente. El xoconostle mostró bajo contenido de lípidos y proteínas, alto en fibra soluble y ácidos orgánicos que favorecen conservación y gelificación. Los compuestos fenólicos, flavonoides y betalaínas explican su capacidad antioxidante, mientras que el mucílago mejora textura y estabilidad. Procesos como secado por aspersión y extracción asistida preservan bioactivos. Las aplicaciones en salsas, mermeladas, yogur y recubrimientos incrementan estabilidad y funcionalidad, destacando su potencial en alimentos saludables.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
[1] Livera-Muñoz M, Muratalla-Lúa A, Flores-Almaraz R, Ortiz-Hernández YD, González-Hernández VA, Castillo-González F, et al. Parthenocarpic Cactus Pears (Opuntia spp.) with Edible Sweet Peel and Long Shelf Life. Horticulturae 2023;10:39. https://doi.org/10.3390/horticulturae10010039.
[2] Montiel-Salero D, Jiménez-Aguilar A, Ramírez-Sánchez SE, Ruiz-Juárez D, Guerrero-Andrade O, Segundo-Pedraza E, et al. First report of Alternaria alternata causing the golden spot in xoconostle (Opuntia matudae) in Hidalgo, México. Rev Mex Fitopatol Mex J Phytopathol 2021;40. https://doi.org/10.18781/R.MEX.FIT.2107-3.
[3] Bravo-Vinaja Á, Méndez-Gallegos SDJ. Production and trends of scientific research on cactus pear in mainstream journals. J Prof Assoc Cactus Dev 2016;18:87–102. https://doi.org/10.56890/jpacd.v18i.57.
[4] Ciriminna R, Chavarría‐Hernández N, Rodríguez‐Hernández AI, Pagliaro M. Toward unfolding the bioeconomy of nopal ( Opuntia spp.). Biofuels Bioprod Biorefining 2019;13:1417–27. https://doi.org/10.1002/bbb.2018.
[5] Castro-Muñoz R, Fíla V, Barragán-Huerta BE, Yáñez-Fernández J, Piña-Rosas JA, Arboleda-Mejía J. Processing of Xoconostle fruit ( Opuntia joconostle ) juice for improving its commercialization using membrane filtration. J Food Process Preserv 2018;42:e13394. https://doi.org/10.1111/jfpp.13394.
[6] Fernández-Luqueño F, Medina-Pérez G, Pérez-Soto E, Espino-Manzano S, Peralta-Adauto L, Pérez-Ríos S, et al. Bioactive Compounds of Opuntia spp. Acid Fruits: Micro and Nano-Emulsified Extracts and Applications in Nutraceutical Foods. Molecules 2021;26:6429. https://doi.org/10.3390/molecules26216429.
[7] Martínez-González CR, Luna-Vega I, Gallegos-Vázquez C, García-Sandoval R. Opuntia delafuentiana (Cactaceae: Opuntioideae), a new xoconostle from central Mexico. Phytotaxa 2015;231:230. https://doi.org/10.11646/phytotaxa.231.3.2.
[8] Pérez JJ, Ortiz R, Ramírez ML, Olivares J, Ruíz D, Montiel D. Presence of organochlorine pesticides in xoconostle (Opuntia joconostle) in the central region of Mexico. Int J Food Contam 2016;3:21. https://doi.org/10.1186/s40550-016-0044-4.
[9] Tenorio-Escandón P, Ramírez-Hernández A, Flores J, Juan-Vicedo J, Martínez-Falcón AP. A Systematic Review on Opuntia (Cactaceae; Opuntioideae) Flower-Visiting Insects in the World with Emphasis on Mexico: Implications for Biodiversity Conservation. Plants 2022;11:131. https://doi.org/10.3390/plants11010131.
[10] Díaz MDSS, Barba De La Rosa A-P, Héliès-Toussaint C, Guéraud F, Nègre-Salvayre A. Opuntia spp.: Characterization and Benefits in Chronic Diseases. Oxid Med Cell Longev 2017;2017:8634249. https://doi.org/10.1155/2017/8634249.
[11] Morales P, Barros L, Ramírez-Moreno E, Santos-Buelga C, Ferreira ICFR. Xoconostle fruit (Opuntia matudae Scheinvar cv. Rosa) by-products as potential functional ingredients. Food Chem 2015;185:289–97. https://doi.org/10.1016/j.foodchem.2015.04.012.
[12] Gallegos-Vázquez C, Scheinvar L, Silos-Espino H, Fuentes-Hernandez AD, Núñez-Colín CA, Olalde-Parra G. ‘Invierno’, cultivar de xoconostle para la región central de México. Rev Mex Cienc Agríc 2018:1349–54. https://doi.org/10.29312/remexca.v0i7.1122.
[13] Almaráz-Buendia I, Hernández-Escalona A, González-Tenorio R, Santos-Ordoñez N, Espino-García JJ, Martínez-Juárez V, et al. Producing an Emulsified Meat System by Partially Substituting Pig Fat with Nanoemulsions that Contain Antioxidant Compounds: The Effect on Oxidative Stability, Nutritional Contribution, and Texture Profile. Foods 2019;8:357. https://doi.org/10.3390/foods8090357.
[14] Campos‐Montiel RG, Santos‐Ordoñez N, Almaraz‐Buendía I, Aguirre‐Álvarez G, Espino‐García JJ, Ludeña‐Urquizo FE, et al. Impact of incorporating double emulsions with bioactive compounds of acid cactus fruits in emulsified meat products during storage. J Food Process Preserv 2021;45. https://doi.org/10.1111/jfpp.15477.
[15] Cortez-García RM, Ortiz-Moreno A, Zepeda-Vallejo LG, Necoechea-Mondragón H. Effects of Cooking Methods on Phenolic Compounds in Xoconostle (Opuntia joconostle). Plant Foods Hum Nutr 2015;70:85–90. https://doi.org/10.1007/s11130-014-0465-2.
[16] Gómez-Covarrubias SI, Rivera-Cabrera F, Mendoza-Gastelum JI, Oidor-Chan VH, Aarland RC, Cruz-Sosa F, et al. Effect of Pasteurization on Chemical and Functional Properties of Xoconostle (Opuntia joconostle) Juice. J Food Qual Hazards Control 2020. https://doi.org/10.18502/jfqhc.7.1.2447.
[17] Jiménez-Guzmán J, Leyva-Daniel DE, Camacho-Díaz BH, Jimenéz-Aparicio AR, Alamilla-Beltrán L. Spray Drying of Xoconostle Juice: Interaction of Microstructure, Function, and Drying Operation Conditions. In: Del Real-Olvera J, editor. Sustain. Dry. Technol., InTech; 2016. https://doi.org/10.5772/63723.
[18] Dávila-Hernández, G, Sánchez-Pardo, ME, Gutiérrez-López, GF, Necoechea-Mondragon, H, Ortiz-Moreno A, Instituto Politecnico Nacional. EFFECT OF MICROWAVE PRETREATMENT ON BIOACTIVE COMPOUNDS EXTRACTION FROM XOCONOSTLE (Opuntia joconostle) BY-PRODUCTS. Rev Mex Ing Quím 2018;19:191–204. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Davila.
[19] Espinosa‐Muñoz V, RoldáN‐cruz CA, HernáNdez‐Fuentes AD, Quintero‐Lira A, Almaraz‐Buendía I, Campos‐Montiel RG. Ultrasonic‐Assisted Extraction of Phenols, Flavonoids, and Biocompounds with Inhibitory Effect Against Salmonella Typhimurium and Staphylococcus Aureus from Cactus Pear. J Food Process Eng 2017;40:e12358. https://doi.org/10.1111/jfpe.12358.
[20] Gutiérrez-Rojas M, Ruiz-Juárez D, Vela-Correa G, Olivares-Orozco JL, Rueda-Puente EO. Physical-chemical quality of xoconostle fruits (Opuntia matudae and O. joconostle) in the Valle del Mezquital, Hidalgo, Mexico. J Prof Assoc Cactus Dev 2022;24.
[21] Medina-Pérez G, Zaldívar-Ortega AK, Cenobio-Galindo ADJ, Afanador-Barajas LN, Vieyra-Alberto R, Estefes-Duarte JA, et al. Antidiabetic Activity of Cactus Acid Fruit Extracts: Simulated Intestinal Conditions of the Inhibitory Effects on α-amylase and α-glucosidase. Appl Sci 2019;9:4066. https://doi.org/10.3390/app9194066.
[22] Corral-Martínez JJ, Tornes-Olmedo JN, Valadez-Moctezuma E. The genus Opuntia: main uses, lines of research and perspectives. J Prof Assoc Cactus Dev 2024;26:179–202. https://doi.org/10.56890/jpacd.v26i.559.
[23] Gómez‐Maqueo A, García‐Cayuela T, Fernández‐López R, Welti‐Chanes J, Cano MP. Inhibitory potential of prickly pears and their isolated bioactives against digestive enzymes linked to type 2 diabetes and inflammatory response. J Sci Food Agric 2019;99:6380–91. https://doi.org/10.1002/jsfa.9917.
[24] Ruiz-Juárez D, Guitiérrez-Rojas M, Ortega-Rojas J, Rueda-Puente EO, Ceiro-Catasú WG, Holguín-Peña JR. Influence of different semiarid zones of Hidalgo in wild xoconostle prickly pear morphometry. J Prof Assoc Cactus Dev 2024;26:203–19. https://doi.org/10.56890/jpacd.v26i.567.
[25] Cannavacciuolo C, Pagliari S, Giustra CM, Carabetta S, Guidi Nissim W, Russo M, et al. LC-MS and GC-MS Data Fusion Metabolomics Profiling Coupled with Multivariate Analysis for the Discrimination of Different Parts of Faustrime Fruit and Evaluation of Their Antioxidant Activity. Antioxidants 2023;12:565. https://doi.org/10.3390/antiox12030565.
[26] Adefegha SA, Oyeleye SI, Oboh G. Distribution of Phenolic Contents, Antidiabetic Potentials, Antihypertensive Properties, and Antioxidative Effects of Soursop ( Annona muricata L.) Fruit Parts In Vitro. Biochem Res Int 2015;2015:1–8. https://doi.org/10.1155/2015/347673.
[27] Borràs D, Plazas M, Moglia A, Lanteri S. The influence of acute water stresses on the biochemical composition of bell pepper ( Capsicum annuum L .) berries. J Sci Food Agric 2021;101:4724–34. https://doi.org/10.1002/jsfa.11118.
[28] Otálora MC, Wilches-Torres A, Gómez Castaño JA. Mucilage from Yellow Pitahaya (Selenicereus megalanthus) Fruit Peel: Extraction, Proximal Analysis, and Molecular Characterization. Molecules 2023;28:786. https://doi.org/10.3390/molecules28020786.
[29] Alvarez AR, Peña-Valdivia CB. Structural polysaccharides in xoconostle (Opuntia matudae) fruits with different ripening stages. J Prof Assoc Cactus Dev 2009;11:26–44.
[30] Pimienta-Barrios E, Méndez-Morán L, Ramírez-Hernández BC, García de Alba-García JE, Domínguez-Arias RM. Efecto de la ingestión del fruto de Xoconostle (Opuntia joconostle Web.) sobre la glucosa y lípidos séricos. Agrociencia 2008;42:645–53.
[31] Arias-Rico J, Cruz-Cansino NDS, Cámara-Hurtado M, López-Froilán R, Pérez-Rodríguez ML, Sánchez-Mata MDC, et al. Study of Xoconostle (Opuntia spp.) Powder as Source of Dietary Fiber and Antioxidants. Foods 2020;9:403. https://doi.org/10.3390/foods9040403.
[32] Garcia-Saavedra NM, Barros L, Reis FS, Roriz CL, Alves MJ, García-Hernandez M, et al. Chemical characterization and biological activities of two varieties of xoconostle fruits Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar. Food Funct 2019;10:3181–7. https://doi.org/10.1039/C9FO00737G.
[33] Giraldo-Silva L, Ferreira B, Rosa E, Dias ACP. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants 2023;12:543. https://doi.org/10.3390/plants12030543.
[34] García Hernández M. Evaluación del contenido nutrimental, fibra dietética y propiedades antioxidantes de dos variedades de xoconostle (Opuntia, spp). Tesis de Maestría. Universidad Autónoma del Estado de Hidalgo, 2017.
[35] Mendoza-Mendoza B. Xoconostle (Opuntia spp.) como fuente de compuestos bioactivos para alimentos funcionales. Proc. Cienc. Multidiscip. 1st ed., ECORFAN; 2020, p. 19–27. https://doi.org/10.35429/P.2020.4.19.27.
[36] Dinc SO, Colakoglu F, Kunili IE, Ormanci HB. Profiling the effects of starter cultures on biochemical compounds in fermented fish sauces and their relationships with sensory perceptions. Int J Food Sci Technol 2024;59:6473–90. https://doi.org/10.1111/ijfs.17392.
[37] Ikegaya A, Toyoizumi T, Kosugi T, Arai E. Taste and palatability of strawberry jam as affected by organic acid content. Int J Food Prop 2020;23:2087–96. https://doi.org/10.1080/10942912.2020.1843484.
[38] Shi Y, Pu D, Zhou X, Zhang Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022;11:3408. https://doi.org/10.3390/foods11213408.
[39] Álvarez-Castro NV, Corrales-Garcia J, Hernandez-Montes A, Garcia-Mateos M del R, Peña-Valdivia CB, Quiroz-Gonzalez B. Development of a snack from xoconostle (Opuntia matudae Scheinvar) sweetened with neotame and its antioxidant capacity. J Prof Assoc Cactus Dev 2014;16:15–31. https://doi.org/10.56890/jpacd.v16i.68.
[40] Navarro-Cortez RO, Santiago-Saenz YO, López-Palestina CU, Gutiérrez-Tlahque J, Piloni-Martini J. Application of a Simplex–Centroid Mixture Design to Evaluate the Phenolic Compound Content and Antioxidant Potential of Plants Grown in Mexico. Foods 2023;12:3479. https://doi.org/10.3390/foods12183479.
[41] Espino-Manzano SO, León-López A, Aguirre-Álvarez G, González-Lemus U, Prince L, Campos-Montiel RG. Application of Nanoemulsions (W/O) of Extract of Opuntia oligacantha C.F. Först and Orange Oil in Gelatine Films. Molecules 2020;25:3487. https://doi.org/10.3390/molecules25153487.
[42] Medina‐Pérez G, Hernández‐Uribe JP, Fernández‐León D, Prince L, Fernández‐Luqueño F, Campos‐Montiel RG. Application of nanoemulsions (w/o) with active compounds of cactus pear fruit in starch films to improve antioxidant activity and incorporate antibacterial property. J Food Process Eng 2019;42:e13268. https://doi.org/10.1111/jfpe.13268.
[43] Cenobio-Galindo ADJ, Pimentel-González DJ, Del Razo-Rodríguez OE, Medina-Pérez G, Carrillo-Inungaray ML, Reyes-Munguía A, et al. Antioxidant and antibacterial activities of a starch film with bioextracts microencapsulated from cactus fruits (Opuntia oligacantha). Food Sci Biotechnol 2019;28:1553–61. https://doi.org/10.1007/s10068-019-00586-9.
[44] Hernández-Fuentes AD, Trapala-Islas A, Gallegos-Vásquez C, Campos-Montiel RG, Pinedo-Espinoza JM, Guzmán-Maldonado SH. Physicochemical variability and nutritional and functional characteristics of xoconostles ( Opuntia spp.) accessions from Mexico. Fruits 2015;70:109–16. https://doi.org/10.1051/fruits/2015002.
[45] Medina-Pérez G, Estefes-Duarte JA, Afanador-Barajas LN, Fernández-Luqueño F, Zepeda-Velásquez AP, Franco-Fernández MJ, et al. Encapsulation Preserves Antioxidant and Antidiabetic Activities of Cactus Acid Fruit Bioactive Compounds under Simulated Digestion Conditions. Molecules 2020;25:5736. https://doi.org/10.3390/molecules25235736.
[46] Morales P, Barros L, Ramírez-Moreno E, Santos-Buelga C, Ferreira ICFR. Exploring xoconostle by-products as sources of bioactive compounds. Food Res Int 2014;65:437–44. https://doi.org/10.1016/j.foodres.2014.05.067.
[47] Sanchez-Gonzalez N, Jaime-Fonseca MR, San Martin-Martinez E, Zepeda LG. Extraction, Stability, and Separation of Betalains from Opuntia joconostle cv. Using Response Surface Methodology. J Agric Food Chem 2013;61:11995–2004. https://doi.org/10.1021/jf401705h.
[48] Scarano P, Naviglio D, Prigioniero A, Tartaglia M, Postiglione A, Sciarrillo R, et al. Sustainability: Obtaining Natural Dyes from Waste Matrices Using the Prickly Pear Peels of Opuntia ficus-indica (L.) Miller. Agronomy 2020;10:528. https://doi.org/10.3390/agronomy10040528.
[49] Guerrero-Rubio MA, Escribano J, García-Carmona F, Gandía-Herrero F. Light Emission in Betalains: From Fluorescent Flowers to Biotechnological Applications. Trends Plant Sci 2020;25:159–75. https://doi.org/10.1016/j.tplants.2019.11.001.
[50] Shahiri Tabarestani P, Kashiri M, Maghsoudlou Y, Shahiri Tabarestani H, Ghorbani M. Effect of Opuntia pulp as a clean label ingredient on techno‐functional properties of meat‐free burger. Int J Food Sci Technol 2022;57:3982–9. https://doi.org/10.1111/ijfs.15657.
[51] Armas Diaz Y, Machì M, Salinari A, Pérez-Oleaga CM, Martínez López NM, Briones Urbano M, et al. Prickly pear fruits from Opuntia ficus-indica varieties as a source of potential bioactive compounds in the Mediterranean diet. Mediterr J Nutr Metab 2022;15:581–92. https://doi.org/10.3233/MNM-220102.
[52] Subriya S, Maheshwari M, Saranya E, Senthil Nathan M, Sridevi M, Nirmala C. Production of Natural Food Colorant with Organic Mordant Solutions and Incorporation into Modern Food Systems. J Phys Conf Ser 2024;2801:012018. https://doi.org/10.1088/1742-6596/2801/1/012018.
[53] Morales AF, Contreras ÁS, Flores TG, Hernández LMA. Evaluación del jugo de xoconostle como prebiótico. Rev Int SOCIO-INNOVA-TEC ALTIPLANO REISITAL 2021;1:47–47.
[54] Quintero-García M, Gutiérrez-Cortez E, Bah M, Rojas-Molina A, Cornejo-Villegas MDLA, Del Real A, et al. Comparative Analysis of the Chemical Composition and Physicochemical Properties of the Mucilage Extracted from Fresh and Dehydrated Opuntia ficus indica Cladodes. Foods 2021;10:2137. https://doi.org/10.3390/foods10092137.
[55] Ellerbrock RH, Ahmed MA, Gerke HH. Spectroscopic characterization of mucilage (Chia seed) and polygalacturonic acid. J Plant Nutr Soil Sci 2019;182:888–95. https://doi.org/10.1002/jpln.201800554.
[56] Hussain N, Ishak I, Sulaiman R, Fauzi NM, Coorey R. Influence of processing conditions on rheological properties of aqueous extract chia (Salvia hispanica L.) mucilage. Food Res 2020;4:227–36. https://doi.org/10.26656/fr.2017.4(S1).S03.
[57] Kreitschitz A, Gorb SN. The micro- and nanoscale spatial architecture of the seed mucilage—Comparative study of selected plant species. PLOS ONE 2018;13:e0200522. https://doi.org/10.1371/journal.pone.0200522.
[58] Chahdoura H, Morales P, Barreira JCM, Barros L, Fernández-Ruiz V, Ferreira ICFR, et al. Dietary fiber, mineral elements profile and macronutrients composition in different edible parts of Opuntia microdasys (Lehm.) Pfeiff and Opuntia macrorhiza (Engelm.). LWT - Food Sci Technol 2015;64:446–51. https://doi.org/10.1016/j.lwt.2015.05.011.
[59] Gil V, Rey L, Barbera M, R Castanon I, R Ventura M. TANNIN CONTENT AND CHEMICAL COMPOSITION OF UNCONVENTIONAL AND CONVENTIONAL FEED FOR RUMINANTS. J Agric For 2016;62. https://doi.org/10.17707/AgricultForest.62.4.01.
[60] Aumeistere L, Ciprovica I, Zavadska D, Bavrins K, Borisova A. Essential elements in mature human milk, 2019, p. 25–9. https://doi.org/10.22616/FoodBalt.2019.005.
[61] Xu J, Fu L. Unearthing the Multifaceted Potential of Opuntia spp.: A Comprehensive Exploration. J Prof Assoc Cactus Dev 2023;25:32–5. https://doi.org/10.56890/jpacd.v25i.524.
[62] Monroy-Gutiérrez T, Martínez-Damián MaT, Barrientos-Priego AF, Gallegos-Vázquez C, Rodríguez-Pérez JE, Colinas-León MaTB. Evaluación de algunas características físicas y químicas de frutos de xocotuna, tuna y xoconostle en poscosecha. Rev Mex Cienc Agríc 2017;8:189–97. https://doi.org/10.29312/remexca.v8i1.82.
[63] Offiah VO, Abu JO, Yusufu MI. Effect of co-fermentation on the chemical composition and sensory properties of maize and soybean complementary flours. Int J Innov Food Sci Technol 2017;1:18–28. https://doi.org/10.25218/ijifst.2017.01.001.03.
[64] Roldán-Cruz CA, Ángeles-Santos A, Hernández-Fuentes AD, Santos-Fernández SA, Campos-Montiel RG. Efecto inhibitorio de bacterias patógenas con extractos de xoconostle asistidos por ultrasonido. Inv Cs Tec Alim 2016;1:214–9.
[65] Lira BMR, Montiel NIA, Ortega JAA, Cansino N del SC. Xoconostle (Opuntia spp.) y Capulín (Prunus serotina spp.): frutos tradicionales con alto valor nutricional y beneficios a la salud. South Fla J Dev 2024;5:e4826–e4826. https://doi.org/10.46932/sfjdv5n12-051.
[66] Pérez-Montes A, Gomez De Anda FR, Ojeda-Ramírez D, González-Tenorio R, Piloni-Martini J, Fernández-Martínez E, et al. Nutritional, physicochemical, functional and antioxidant characterization of Opuntia oligacantha (xoconostle Ulapa) endocarp flour. Rev Bio Cienc 2025. https://doi.org/10.15741/revbio.12.e1595.
[67] Cenobio-Galindo ADJ, Díaz-Monroy G, Medina-Pérez G, Franco-Fernández MJ, Ludeña-Urquizo FE, Vieyra-Alberto R, et al. Multiple Emulsions with Extracts of Cactus Pear Added in A Yogurt: Antioxidant Activity, In Vitro Simulated Digestion and Shelf Life. Foods 2019;8:429. https://doi.org/10.3390/foods8100429.
[68] Duarte-Medina DJ, Martínez-Flores HE, Tranquilino-Rodríguez E, Secundino JP. Hypolipidemic-hepatoprotective effect of a cookie added with Opuntia atropes cladodes and Opuntia joconostle fruits in a rat model. Future Foods 2024;9:100306. https://doi.org/10.1016/j.fufo.2024.100306.
[69] Medina-Pérez G, Peralta-Adauto L, Afanador-Barajas L, Fernández-Luqueño F, Pérez-Soto E, Campos-Montiel R, et al. Inhibition of Urease, Elastase, and β-Glucuronidase Enzymatic Activity by Applying Aqueous Extracts of Opuntia oligacantha C.F. Först Acid Fruits: In Vitro Essay under Simulated Digestive Conditions. Appl Sci 2021;11:7705. https://doi.org/10.3390/app11167705.
[70] Morales P, Ramírez-Moreno E, Sanchez-Mata MDC, Carvalho AM, Ferreira ICFR. Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Res Int 2012;46:279–85. https://doi.org/10.1016/j.foodres.2011.12.031.
[71] García-Pérez P, Lozano-Milo E, Landin M, Gallego PP. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. Pharmaceuticals 2020;13:444. https://doi.org/10.3390/ph13120444.
[72] Gómez-López I, Lobo-Rodrigo G, Portillo MP, Cano MP. Characterization, Stability, and Bioaccessibility of Betalain and Phenolic Compounds from Opuntia stricta var. Dillenii Fruits and Products of Their Industrialization. Foods 2021;10:1593. https://doi.org/10.3390/foods10071593.
[73] Gómez-López I, Lobo-Rodrigo G, Portillo MP, Cano MP. Ultrasound-Assisted “Green” Extraction (UAE) of Antioxidant Compounds (Betalains and Phenolics) from Opuntia stricta var. Dilenii’s Fruits: Optimization and Biological Activities. Antioxidants 2021;10:1786. https://doi.org/10.3390/antiox10111786.
[74] Gómez-García I, Fernández-Quintela A, González M, Gómez-Zorita S, Muguerza B, Trepiana J, et al. Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities. Nutrients 2024;16:1282. https://doi.org/10.3390/nu16091282.
[75] Gouws C, Mortazavi R, Mellor D, McKune A, Naumovski N. The effects of Prickly Pear fruit and cladode (Opuntia spp.) consumption on blood lipids: A systematic review. Complement Ther Med 2020;50:102384. https://doi.org/10.1016/j.ctim.2020.102384.
[76] Héliès-Toussaint C, Fouché E, Naud N, Blas-Y-Estrada F, Del Socorro Santos-Diaz M, Nègre-Salvayre A, et al. Opuntia cladode powders inhibit adipogenesis in 3 T3-F442A adipocytes and a high-fat-diet rat model by modifying metabolic parameters and favouring faecal fat excretion. BMC Complement Med Ther 2020;20:33. https://doi.org/10.1186/s12906-020-2824-x.
[77] Vieira ACA, Ferreira FDS, Araújo JMDD, Dutra LMG, Batista KS, Cordeiro AMTDM, et al. Exploring the Potential Hepatoprotective Properties of Cactus (Cactaceae) in Liver Health and Disease Management: A Brief Review. Livers 2024;4:287–313. https://doi.org/10.3390/livers4020021.
[78] Estrada-Sierra NA, Gonzalez-Avila M, Urias-Silvas J-E, Rincon-Enriquez G, Garcia-Parra MD, Villanueva-Rodriguez SJ. The Effect of Opuntia ficus Mucilage Pectin and Citrus aurantium Extract Added to a Food Matrix on the Gut Microbiota of Lean Humans and Humans with Obesity. Foods 2024;13:587. https://doi.org/10.3390/foods13040587.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Ulises Cruz-Salinas, Edson Eduardo Romero-Telles, Jesús Guadalupe Pérez-Flores, Laura García-Curiel, Israel Oswaldo Ocampo-Salinas, Natalia Bautista-Meneses, Juan Ramírez-Godínez, Nayeli Vélez-Rivera

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.









