Design and simulation of an exoskeleton

Keywords: Rehabilitation, exoskeleton, co-simulation, linear control

Abstract

The present work describes the importance of co-simulation in the design of an exoskeleton and in the area of ​​robotic medicine. The proposed methodology consists of two processes: mechanical design and analysis; and the development of the control algorithm to demonstrate the proper functioning of the exoskeleton. The analysis of the mechanism is created through CAD in SolidWorks software, which is used for computer designs since it allows evaluating the mechanical part before it is built. For the validation of the exoskeleton, the simulation of the walk of a person is implemented, this is done with the Matlab software using a linear control algorithm. The foregoing allows to analyze and create rehabilitation routines with the help of a co-simulated exoskeleton of the lower part of the human being, which emulates the movements of a normal human gait and its control of movement, in order to achieve movement natural human and help on the issue of disability of patients with lower body injuries.

Downloads

Download data is not yet available.

References

Aach, M., Cruciger, O., Sczesny-Kaiser, M., Höffken, O., Meindl, R. C., Tegenthoff, M., … Schildhauer, T. A. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. The Spine Journal, 14(12), 2847–2853. https://doi.org/10.1016/J.SPINEE.2014.03.042

Ali, H. (2014). Bionic Exoskeleton: History, Development and the Future. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2014, 58–62. Retrieved from http://iosrjournals.org/iosr-jmce/papers/ICAET-2014/me/volume-5/12.pdf?id=7622

Aliman, N., Ramli, R., & Haris, S. M. (2018). Modeling and co-simulation of actuator control for lower limb exoskeleton. 2018 3rd International Conference on Control and Robotics Engineering, ICCRE 2018, 94–98. https://doi.org/10.1109/ICCRE.2018.8376441

Han, S., Wang, H., & Tian, Y. (2018). Adaptive computed torque control based on RBF network for a lower limb exoskeleton. Proceedings - 2018 IEEE 15th International Workshop on Advanced Motion Control, AMC 2018, 35–40. https://doi.org/10.1109/AMC.2019.8371059

Lugo, E., Ponce, P., Molina, A., & Castro, S. (2014). Co-simulación del Diseño Biomecánico para un Exoesqueleto Robótico del Miembro Inferior. Revista Mexicana de Ingenieria Biomedica, 35(2), 145–158.

Muramatsu, Y., Kobayashi, H., Sato, Y., Jiaou, H., Hashimoto, T., & Kobayashi, H. (2011). Quantitative Performance Analysis of Exoskeleton Augmenting Devices - Muscle Suit - for Manual Worker. International Journal of Automation Technology, 5(4), 559–567. https://doi.org/10.20965/ijat.2011.p0559

Reinkensmeyer, D. J., & Boninger, M. L. (2012). Technologies and combination therapies for enhancing movement training for people with a disability. Journal of NeuroEngineering and Rehabilitation, 9(1), 1–10. https://doi.org/10.1186/1743-0003-9-17

Yagn, N. (1890). Apparatus for facilitating walking, running, and jumping,. Retrieved from https://patentimages.storage.googleapis.com/0f/e0/2c/161bea0a876b81/US420179.pdf

Yasunidos. (2013). Fuzzy PID Control for Passive Lower Extremity Exoskeleton in Swing Phase. Yasunidos. https://doi.org/10.1109/ICEIEC.2013.6835483

Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11(2), 128–138. https://doi.org/10.1109/TMECH.2006.871087

Published
2020-07-05
How to Cite
Veléz Díaz, D., Pozo-Méndez, A., Gudiño-Lau, J., Alcala, J., & Charre-Ibarra, S. (2020). Design and simulation of an exoskeleton. XIKUA Boletín Científico De La Escuela Superior De Tlahuelilpan, 8(16), 16-24. https://doi.org/10.29057/xikua.v8i16.5946

Most read articles by the same author(s)

<< < 4 5 6 7 8 9 10 > >>