Macroscopic fungi as bioaccumulators of heavy metals

Keywords: heavy metals, bioaccumulation, edible macroscopic fungi, health risk

Abstract

Through the years, the union between fungi and man has generated different interests based on their medicinal, commercial and food use. The close relationship that macroscopic fungi have with the soil makes them organisms with a high potential for biodegradation of organic matter, the uptake of nutrients and for the absorption of dangerous substances present in the environment such as heavy metals, many of them of toxicological interest. It is due to the multiple reports of the bioaccumulation capacity of these contaminants in macroscopic fungi, that the benefits that these organisms confer on humans could be accompanied by unwanted side effects on their health. This bibliographic review allowed us to observe research focused on bioaccumulation capacity at the international level is extensive, while at the national level it is scarce; on the other hand, the focus on the impact on health is scarce at the international level and null at the national level.

Downloads

Download data is not yet available.

References

Allen, E., & Allen, M. (1986). Water Relations of Xeric Grasses in the Field: Interactions of Mycorrhizas and Competition. The New Phytologist, 104 (4), 559-571. https://www.jstor.org/stable/2433031?seq=1.

Allen, M.F. (1991). The ecology of mycorrhizae. Cambridge University Press. https://books.google.com.mx/books?hl=es&lr=&id=w5XK4scCQfQC&oi=fnd&pg=PR9&dq=The+ecology+of+mycorrhizae.+Allen,+M.F.+(1991).+&ots=PEBfBPbtcv&sig=AObT3l8qzSLQgE1Bx729I5YWZ4A#v=onepage&q=The%20ecology%20of%20mycorrhizae.%20Allen%2C%20M.F.%20(1991).&f=false.

Alonso Díaz, J. (2001). Bioacumulación de metales pesados en macromicetos comestibles. Repercusiones toxicológicas y estudios de biorrecuperación. Tesis doctoral. Universidad de Santiago de Compostela (USC), Campus de Lugo. https://dialnet.unirioja.es/servlet/tesis?codigo=70113.

Alonso Díaz, J., Fernández, M., Melgar, M., Pérez, M., & Corral, M. (2010). Elementos traza en hongos comestibles. Repercusiones alimentarias y valoración nutricional. The presence of trace elements in mushrooms: nutritional value and food repercussions. Boletín Micológico de FAMCAL, 5, 101-126. https://www.researchgate.net/publication/311675849_Elementos_traza_en_hongos_comestibles_Repercusiones_alimentarias_y_valoracion_nutricional_The_presence_of_trace_elements_in_mushrooms_nutritional_value_and_food_repercussions.

Alonso, J., García, M. A., Pérez-López, M., & Melgar, M. J. (2003). The Concentrations and Bioconcentration Factors of Copper and Zinc in Edible Mushrooms. Arch Environ Contam Toxicol, 44(2), 0180-0188. http://doi.org/10.1007/s00244-002-2051-0.

Alonso, J., García, M. A., Pérez López, J. M., & Melgar, M. J. (2004). Acumulación de metales pesados en macromicetos comestibles y factores que influyen en su captación. Revista de Toxicología, 21(1), 11-15. https://www.researchgate.net/publication/26617856_Acumulacion_de_metales_pesados_en_macromicetos_comestibles_y_factores_que_influyen_en_su_captacion.

Alonso, J., Salgado, M. J., García, M. A., & Melgar, M. J. (2000). Accumulation of mercury in edible macrofungi: influence of some factors. Arch Environ Contam Toxicol, 38(2), 158-162. https://doi.org/10.1007/s002449910020.

Arvay, J., Tomas, J., Hauptvogl, M., Massanyi, P., Harangozo, L., Toth, T., . . . Bumbalova, M. (2015). Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. J Environ Sci Health B, 50(11), 833-843. http://doi.org/10.1080/03601234.2015.1058107.

Borovička, J., & Řanda, Z. (2007). Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycological Progress, 6, 249-259. https://doi.org/10.1007/s11557-007-0544-y.

Cadavid-Velásquez, E. d. J., Marrugo-Negrete, J. L., & Pérez-Vásquez, N. d. S. P. (2019). Metales pesados en macromicetos asociados al manglar en la Bahia Cispata, Córdoba-Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 22(2). https://revistas.udca.edu.co/index.php/ruadc/article/view/1082/1824.

Caamal-Caamal, L. G., Montonya, A., Trejo-Hernández, L., & Castillo-Guevara, C. (2016). Estado del arte relativo al conocimiento tradicional de los hongos silvestres en el estado de Tlaxcala, México. Mexican Journal of Biotechnology, 1-14.

Campanella, L., E. Cardarelli, M. Cordatore & L. Patrolecco. (2005). Environmental protection by fungal activity. Med. Fac. Landbouww. Univ. Gent. 60(4b): 2545-2553. https://www.tib.eu/en/search/id/BLCP%3ACN010939331/Environmental-protection-by-fungal-activity/.

Cano-Estrada, A., & Romero-Bautista, L. (2016). Valor económico, nutricional y medicinal de hongos comestibles silvestres. Revista chilena de nutrición, 43, 75-80. http://doi.org/10.4067/S0717-75182016000100011.

Chang, S.-T., & Chan, K.-Y. (1973). Quantitative and Qualitative Changes in Proteins During Morphogenesis of the Basidiocarp of Volvariella Volvacea. Mycologia, 65(2), 355-364. https://doi.org/10.1080/00275514.1973.12019444.

Chiocchetti, G. M., Latorre, T., Clemente, M. J., Jadan-Piedra, C., Devesa, V., & Velez, D. (2020). Toxic trace elements in dried mushrooms: Effects of cooking and gastrointestinal digestion on food safety. Food Chem, 306, 125478. http://doi.org/10.1016/j.foodchem.2019.125478.

Garcia, M. A., Alonso J Fau - Melgar, M. J., & Melgar, M. J. (2009). Lead in edible mushrooms: levels and bioaccumulation factors. Journal of Hazardous Materials 1, 777–783. https://doi.org/10.1016/j.jhazmat.2009.01.058.

Garibay-Orijel, R. & Ruan, F., 2014. Listado de los hongos silvestres consumidos como alimento tradicional en México. En: La etnomicología en México: estado del arte . México: Red de Etnoecología y Patrimonio Biocultural-Asociación Etnobiológica Mexicana-Universidad Autónoma del Estado de Hidalgo-Universidad Nacional Autónoma de México, pp. 99-120.

Gençcelep, H., Uzun, Y., Tuncturk, Y., & Demirel, K. (2009). Determination of mineral contents of wild-grown edible mushrooms. Food Chem, 113, 1033-1036. https://doi.org/10.1016/j.foodchem.2008.08.058.

Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut, 130(3), 317-323. http://doi.org/10.1016/j.envpol.2004.01.004.

Gunnar, N. 2012. Metales: propiedades químicas y toxicidad. En: enciclopedia de la OIT. España: D-INSHT (Instituto Nacional de Seguridad e Higiene en el Trabajo). https://www.insst.es/documents/94886/162520/Cap%C3%ADtulo+63.+Metales+propiedades+qu%C3%ADmicas+y+toxicidad.

Guzmán, G., 1998. Análisis cualitativo y cuantitativo de la diversidad de los hongos en México (Ensayo sobre el inventario fúngico del país) G. Halffter (Ed.), La diversidad biológica de Iberoamérica II, Acta Zoológica Mexicana, nueva serie vol. Especial, CYTED e Instituto de Ecología, Xalapa (1998), pp. 111-175.

Høiland, K. (1995). Reaction of some decomposer basidiomycetes to toxic elements. Nor. J. Bot. 15(3): 305-318. http://doi.rg/10.1111/j.1756-1051.1995.tb00157.x.

Kokkoris, V., Massas, I., Polemis, E., Koutrotsios, G., & Zervakis, G. I. (2019). Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci Total Environ, 685, 280-296. https://doi.org/10.1016/j.scitotenv.2019.05.447.

Kosanić, M., Ranković, B., Rančić, A., & Stanojković, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24(3), 477-484. https://doi.org/10.1016/j.jfda.2016.01.008.

Lipka, K., & Falandysz, J. (2017). Accumulation of metallic elements by Amanita muscaria from rural lowland and industrial upland regions. J Environ Sci Health B, 52(3), 184-190. http://doi.org/10.1080/03601234.2017.1261547.

Lipka, K., Saba, M., & Falandysz, J. (2018). Preferential accumulation of inorganic elements in Amanita muscaria from North-eastern Poland. J Environ Sci Health A Tox Hazard Subst Environ Eng, 53(11), 968-974. http://doi.org/10.1080/10934529.2018.1470805.

Liu, B., Huang, Q., Cai, H., Guo, X., Wang, T., & Gui, M. (2015). Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem, 188, 294-300. https://doi.org/10.1016/j.foodchem.2015.05.010

López-Vázquez, E. (2016). Caracterización química, nutracéutica y evaluación de la actividad geomicológica de nueve setas silvestres del estado de Hidalgo. Tesis doctoral. Universidad Autónoma del Estado de Hidalgo.

López-Vázquez, E., Prieto-García, F., Gayosso-Canales, M., Sánchez, E. M. O., & Villagómez Ibarra, J. R. (2017). PHENOLICS ACIDS, FLAVONOIDS, ASCORBIC ACID, β-GLUCANS AND

ANTIOXIDANT ACTIVITY IN MEXICAN WILD EDIBLE MUSHROOMS. Italian Journal of Food Science, 29(4). doi: https://doi.org/10.14674/IJFS-838.

Medyk, M., Loganathan, B., Bielawski, L., & Falandysz, J. (2018). Inorganic elemental concentrations in birch bolete mushroom (Leccinum scabrum) and top soil: contamination profiles, bioconcentation and annual variations. J Environ Sci Health B, 53(12), 831-839. https://doi.ogr/10.1080/03601234.2018.1505087.

Melgar, M. J., Alonso, J., & García, M. A. (2009). Acumulación de selenio en setas silvestres comestibles: captación y toxicidad Selenium accumulation in wild edible mushrooms: uptake and toxicity. CyTA - Journal of Food, 7(3), 217-223. http://doi.org/10.1080/19476330903068688.

Melgar, M. J., Alonso, J., & García, M. A. (2016). Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food and Chemical Toxicology, 88, 13-20. https://doi.org/10.1016/j.fct.2015.12.002.

Moyano, A., Sánchez, A. G., Toirán, L. M. F., & Charro, E. (2010). Metales pesados en hongos de areas contaminadas. Revista de Ciências Agrárias, 33, 13-21. http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S0871-018X2010000100002.

Ouzouni, P., Veltsistas, P., Paleologos, E., & Riganakos, K. (2007). Determination of metal content in wild edible mushroom species from regions of Greece. Journal of Food Composition and Analysis, 20, 480-486. http://doi.org/10.1016/j.jfca.2007.02.008.

Rodríguez Morcuende, J. F. R. (2011). Principales tipos de intoxicaciones por consumo de setas. Cuadernos del Tomás (3), 150-7172. https://dialnet.unirioja.es/servlet/articulo?codigo=3761550.

Salazar, G. I. E., & Galeano, M. C. R. (2019). Micologia general (C. C. Trujillo Ed.). Colombia. http://www.ucm.edu.co/wp-content/uploads/libros/Micologia_general.pdf.

Salazar Vidal, V. (2016). Manual de Micología Básica: Introducción al Estudio de los Hongos. https://www.researchgate.net/publication/333774015_Manual_de_Micologia_Basica_Introduccion_al_Estudio_de_los_Hongos.

Siric, I., Kasap, A., Bedekovic, D., & Falandysz, J. (2017). Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia. J Environ Sci Health B, 52(3), 156-165. https://doi.org/ 10.1080/03601234.2017.1261538.

Siric, I., Kasap, A., Bedekovic, D., & Falandysz, J. (2017). Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia. J Environ Sci Health B, 52(3), 156-165. https://doi.org/10.1080/03601234.2017.1261538.

Stefanovic, V., Trifkovic, J., Djurdjic, S., Vukojevic, V., Tesic, Z., & Mutic, J. (2016). Study of silver, selenium and arsenic concentration in wild edible mushroom Macrolepiota procera, health benefit and risk. Environ Sci Pollut Res Int, 23(21), 22084-22098. http://doi.org/10.1007/s11356-016-7450-2.

Stijve, T., & Besson, R. (1976). Mercury, cadmium, lead and selenium content of mushroom species belonging to the genus Agaricus. Chemosphere, 5(2), 151-158. https://doi.org/10.1016/0045-6535(76)90036-9

Su, J., Zhang, J., Li, J., Li, T., Liu, H., & Wang, Y. (2018). Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment. J Environ Sci Health B, 53(7), 454-463. http://doi.org/10.1080/03601234.2018.1455361.

Tüzen, M., Özdemir, M., & Demirbaş, A. (1998). Heavy metal bioaccumulation by cultivated Agaricus bisporus from artificially enriched substrates. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 206(6), 417-419. http://doi.org/10.1007/s002170050285.

Wang, X., Liu, H., Zhang, J., Li, T., & Wang, Y. (2017). Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China. J Environ Sci Health B, 52(3), 178-183. http://doi.org/10.1080/03601234.2017.1261545.

Zhang, J., Baralkiewicz, D., Wang, Y., Falandysz, J., & Cai, C. (2019). Arsenic and arsenic speciation in mushrooms from China: A review. Chemosphere, 246, 125685. http://doi.org/10.1016/j.chemosphere.2019.125685.

Published
2021-01-05
How to Cite
de Lucio-Flores, S. A., Otazo-Sánchez, E. M., Romero-Bautista, L., & Gaytán-Oyarzún, J. C. (2021). Macroscopic fungi as bioaccumulators of heavy metals. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(16), 60-65. https://doi.org/10.29057/icbi.v8i16.5823

Most read articles by the same author(s)