New Operative Challenges for the Oil Refining Industry in Mexico

Keywords: Reforming, gasoline, octane number, technological alternatives, fuel quality

Abstract

It has been estimated that the annual rate of toxic gas emissions from the energy sector, including oil refining industry, are of 33%, therefore, it is important to implement strategies for mitigating Greenhouse Effect Gas Emissions and, at the same time, fulfill the energy demand. Current regulations, such as NOM-016-CRE-2016 about the quality of oil fuels, have compelled the energy sector to take into consideration technological alternatives, in order to improve products quality. Processes, such as hydrodesulfurization and naphtha reforming allow elimination of sulfur compounds as well as increase of the octane number in fuels, improving their quality. There are several challenges that the refining industry has to face, being the sustainable operativity one of the most important, due to its relationship with the implementation of strategies and industrial symbiosis methodologies that allow identification of interactions between processes and industries for a better utilization of resources, bringing up mutual benefits.

Downloads

Download data is not yet available.

References

Abdellatief, T. M. M., Ershov, M. A., Kapustin, V. M., Ali Abdelkareem, M., Kamil, M., & Olabi, A. G. (2021). Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review. Fuel, 291. doi:10.1016/j.fuel.2020.120112

Al-Qahtani, K. Y., & Elkamel, A. (2010). Planning and Integration of Refinery and Petrochemical Operations (1 ed.). Weinheim,Germany: Wiley-VCH.

Babich, I. V., & Moulijn, J. A. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review☆. Fuel, 82(6), 607-631. doi:10.1016/S0016-2361(02)00324-1

Bathrinath, S., Abuthakir, N., Koppiahraj, K., Saravanasankar, S., Rajpradeesh, T., & Manikandan, R. (2021). An initiative towards sustainability in the petroleum industry: A review. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.02.330

Cervo, H., Ferrasse, J.-H., Descales, B., & Van Eetvelde, G. (2020). Blueprint: A methodology facilitating data exchanges to enhance the detection of industrial symbiosis opportunities – application to a refinery. Chemical Engineering Science, 211, 115254. doi:10.1016/j.ces.2019.115254

Ciapetta, F. G., & Wallace, D. N. (1972). Catalytic naphtha reforming. Catalysis Reviews, 5(1), 67-158. doi:10.1080/01614947208076866

Duchêne, P., Mencarelli, L., & Pagot, A. (2020). Optimization approaches to the integrated system of catalytic reforming and isomerization processes in petroleum refinery. Computers & Chemical Engineering, 141. doi:10.1016/j.compchemeng.2020.107009

Norma Oficial Mexicana NOM-016-CRE-2016, Especificaciones de calidad de los petrolíferos., (2016).

Fahim, M. A., Alsahhaf, T. A., & Elkilani, A. (2010). Chapter 1 - Introduction. In M. A. Fahim, T. A. Alsahhaf, & A. Elkilani (Eds.), Fundamentals of Petroleum Refining (pp. 1-9). Amsterdam: Elsevier.

Hienuki, S. (2017). Environmental and socio-economic analysis of naphtha reforming hydrogen energy using input-output tables: A case study from Japan. Sustainability (Switzerland), 9(8), 1376. doi:10.3390/su9081376

Hongjun, Z., Mingliang, S., Huixin, W., Zeji, L., & Hongbo, J. (2010). Modeling and simulation of moving bed reactor for catalytic naphtha reforming. Petroleum Science and Technology, 28(7), 667-676. doi:10.1080/10916460902804598

Hou, W., Su, H., Mu, S., & Chu, J. (2007). Multiobjective optimization of the industrial naphtha catalytic reforming process. Chinese Journal of Chemical Engineering, 15(1), 75-80. doi:10.1016/S1004-9541(07)60036-6

Jafari, M., Rafiei, R., Amiri, S., Karimi, M., Iranshahi, D., Rahimpour, M. R., & Mahdiyar, H. (2013). Combining continuous catalytic regenerative naphtha reformer with thermally coupled concept for improving the process yield. International Journal of Hydrogen Energy, 38(25), 10327-10344. doi:10.1016/j.ijhydene.2013.06.039

Jonathan Otaraku, I. (2017). Optimization of Hydrogen Production from Nigerian Crude Oil Samples Through Continuous Catalyst Regeneration (CCR) Reforming Process Using Aspen Hysys. American Journal of Applied Chemistry, 5(5). doi:10.11648/j.ajac.20170505.11

Li, D. (2013). Crucial technologies supporting future development of petroleum refining industry. Chinese Journal of Catalysis, 34(1), 48-60. doi:10.1016/s1872-2067(11)60508-1

Liu, Y., Lu, S., Yan, X., Gao, S., Cui, X., & Cui, Z. (2020). Life cycle assessment of petroleum refining process: A case study in China. Journal of Cleaner Production, 256. doi:10.1016/j.jclepro.2020.120422

Mustafa, J., Ahmad, I., Ahsan, M., & Kano, M. (2017). Computational fluid dynamics based model development and exergy analysis of naphtha reforming reactors. International Journal of Exergy, 24(2-4), 344-363. doi:10.1504/IJEX.2017.087696

Oware Sarfo, K., Clauser, A. L., Santala, M. K., & Árnadóttir, L. (2021). On the atomic structure of Pt(111)/γ-Al2O3(111) interfaces and the changes in their interfacial energy with temperature and oxygen pressure. Applied Surface Science, 542, 148594. doi:10.1016/j.apsusc.2020.148594

Rahimpour, M. R., Jafari, M., & Iranshahi, D. (2013). Progress in catalytic naphtha reforming process: A review. Applied Energy, 109, 79-93. doi:10.1016/j.apenergy.2013.03.080

Sadighi, S., & Mohaddecy, R. S. (2013). Predictive modeling for an industrial naphtha reforming plant using artificial neural network with recurrent layers. International Journal of Technology, 4(2), 102-111. doi:10.14716/ijtech.v4i2.106

Saleh, T. A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends in Environmental Analytical Chemistry, 25. doi:10.1016/j.teac.2020.e00080

Samimi, A., Zarinabadi, S., Kootenaei, A. H. S., Azimia, A., & Mirzaeia, M. (2020). Kinetic Overview of Catalytic Reforming Units (Fixed and Continuous Reforming). Chemical Methodologies, 4, 245-257. doi:10.33945/SAMI/CHEMM.2020.3.3

Speight, J. G. (2011a). Chapter 2 - Refining Processes. In J. G. Speight (Ed.), The Refinery of the Future (pp. 39-80). Boston: William Andrew Publishing.

Speight, J. G. (2011b). Chapter 8 - Hydrotreating and Desulfurization. In J. G. Speight (Ed.), The Refinery of the Future (pp. 237-273). Boston: William Andrew Publishing.

Speight, J. G., & Baki, Ö. (2002). Petroleum Refining Processes. Basel, Switzerland: Marcel Dekker, Inc.

Wang, L., Li, D., Han, F., Zhu, Y., Zhang, M., & Li, W. (2018). Experimental optimization and reactor simulation of coal-derived naphtha reforming over Pt–Re/Γ-Al2O3 using design of experiment and response surface methodology. Reaction Kinetics, Mechanisms and Catalysis, 125(1), 245-269. doi:10.1007/s11144-018-1403-3

Weifeng, H., Hongye, S., Shengjing, M., & Jian, C. (2007). Multiobjective Optimization of the Industrial Naphtha Catalytic Reforming Process* * Supported by the National Natural Science Foundation of China (No.60421002). Chinese Journal of Chemical Engineering, 15(1), 75-80. doi:10.1016/S1004-9541(07)60036-6

Yukesh Kannah, R., Kavitha, S., Preethi, Parthiba Karthikeyan, O., Kumar, G., Dai-Viet, N. V., & Rajesh Banu, J. (2021). Techno-economic assessment of various hydrogen production methods - A review. Bioresour Technol, 319, 124175. doi:10.1016/j.biortech.2020.124175

Yusuf, A. Z., John, Y. M., Aderemi, B. O., Patel, R., & Mujtaba, I. M. (2020). Effect of hydrogen partial pressure on catalytic reforming process of naphtha. Computers and Chemical Engineering, 143. doi:10.1016/j.compchemeng.2020.107090

Zainullin, R. Z., Zagoruiko, A. N., Koledina, K. F., Gubaidullin, I. M., & Faskhutdinova, R. I. (2020). Multi-Criterion Optimization of a Catalytic Reforming Reactor Unit Using a Genetic Algorithm. Catalysis in Industry, 12(2), 133-140. doi:10.1134/s2070050420020129

Published
2021-07-05
How to Cite
Velázquez-Alonso, F., Otazo-Sánchez, E. M., Hernández-Juárez, M., Villagómez-Ibarra, J. R., González-Ramírez, C. A., & Vizcaíno-García, F. (2021). New Operative Challenges for the Oil Refining Industry in Mexico. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(17), 17-23. https://doi.org/10.29057/icbi.v9i17.7162

Most read articles by the same author(s)