Design of the Active Part of a Power Transformer Using Genetic Algorithms for the minimization of losses

  • Norberto Hernández-Romero Universidad Autónoma del Estado de Hidalgo
  • Alberto Ortíz-Licona Universidad Autónoma del Estado de Hidalgo
  • Juan Carlos Seck Tuoh-Mora Universidad Autónoma del Estado de Hidalgo
  • Pedro Lagos-Eulogio Universidad Autónoma del Estado de Hidalgo
  • Joselito Medina Marín Universidad Autónoma del Estado de Hidalgo
  • Germán Rosas-Ortíz Instituto Tecnol´ogico de Pachuca
Keywords: Transformer design, optimization, power transformer, genetic algorithm, electrical machine design

Abstract

This work deals with the problem of optimizing the design of the active part of a three-phase power transformer, for a power range of 10 MVA and 115 / 13.8 kV core type and disk windings.  The objective is to determine a design that meets the lowest total cost of owning considering the loss evaluation. This is a typical problem faced by transformer manufacturers during the bidding stage where they must offer in a short time a design that minimizes the cost of acquisition, which is composed of the cost of materials plus the operation cost monetary loss. That is why the optimization problem is built by these two factors that act as opposing forces. The method of Genetic Algorithms (AG) is reported for the implementation of the optimization to the model of the active part that calculates dimensions, mass of the core, windings, losses in the nucleus and impedance of the transformer. This work is showing that the design parameters are found that minimize the cost function and fulfill with the restrictions specified.

Downloads

Download data is not yet available.

References

Aghmasheh, R., Rashtchi, V., Rahimpour, E., 2018. Gray box modeling of power transformer windings based on design geometry and particle swarm optimization algorithm. IEEE Transactions on Power Delivery 5, 2384–2393. DOI: 10.1109/TPWRD.2018.2808518

Amoiralis, E., Georgilakis, P., Tsili, M. A., Souflaris, A. G. K. A. T., 2011. Complete software package for transformer design optimization and economic evaluation analysis. In Materials Science Forum 670, 535–546.

Amoiralis, E., Tsili, M., Kladas, A. G., 2009a. Transformer design and optimization: a literature survey. IEEE Transactions on Power Delivery 4, 1999–2024. DOI: 10.1109/TPWRD.2009.2028763

Amoiralis, E., Tsili, M. A., Georgilakis, P. S., Kladas, A., Souflaris, A., 2008.

A parallel mixed integer programming-finite element method technique forglobal design optimization of power transformers. IEEE transactions on Magnetics 6, 1022–1025. DOI: 10.1109/tmag.2007.915119

Amoiralis, E. I., Georgilakis, P. S., Tsili, M. A., Kladas, A. G., 2009b. Global transformer optimization method using evolutionary design and numerical field computation. IEEE transactions on magnetics 3, 1720–1723. DOI: 10.1109/TMAG.2009.20127

Andersen, O. W., 1991. Optimized design of electric power equipment. IEEE Computer Applications in Power 4, 11–15. DOI: 10.1109/67.65030

C57.120, S., 2017. Ieee guide for loss evaluation of distribution and power transformers and reactors. IEEE Power and Energy Society.

C57.120.1991, S., 1991. Ieee guide for loss evaluation of distribution and power transformers and reactors. IEEE Power and Energy Society.

C57.12.80, S., 2010. Ieee standard terminology for power and distribution transformers. IEEE Power and Energy Society 1.

C57.12.90, S., 2015. Ieee test code for liquid-immersed distribution, power, and regulating transformers. IEEE Power and Energy Society 1.

CFE, 2015. Evaluacion de pérdidas de transformadores de potencia y cálculo de penalizacion. Comisi ´ on Federal de Electricidad, CFE K0000-20.

De-Jong, K., 1975. An analysis of the behavior of a class of genetic adaptive systems,. PhD thesis, Dept. of Computer and Comm. Sciences, Univ. of Michigan 1.

Dellinger, J. H., 1910. The temperature coefficient of resistance of copper. Journal of the Franklin Institute 170 (3), 213–216. DOI: 10.1016/s0016-0032(10)90872-7

Doulamis, N. D., Doulamis, A. D., Georgilakis, P. S., Kollias, S. D., Hatziargyriou, N. D., 2002. A synergetic neural network-genetic scheme for optimal transformer construction. Integrated Computer-Aided Engineering 1, 37–56. DOI: 10.3233/ICA-2002-9103

Georgilakis, P., 2009. Recursive genetic algorithm-finite element method technique for the solution of transformer manufacturing cost minimisation problem. IET electric power applications 6, 514–519. DOI: 10.1049/iet-epa.2008.0238

Georgilakis, P. S., Olivares, J. C., Esparza-Gonzalez, M. S., 2010. An evolutionary computation solution to transformer design optimization problem. In 7th International Conference on Electrical and Electronics Engineering Research 1, 226–31.

Georgilakis, P. S., Tsili, M. A., Souflaris, A. T., 2007. A heuristic solution to the transformer manufacturing cost optimization problem. Journal of materials processing technology 1, 260–266. DOI: 10.1016/j.jmatprotec.2006.03.034

Geromel, L. H., Souza, C. R., 2002. The application of intelligent systems in power transformer design. In: IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat.

No. 02CH37373). Vol. 1. IEEE, pp. 285–290.

Goldberg, D. E., 1989. Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston 1.

Hernandez, C., Arjona, M. A., Shi-Hai, D., 2008. Object-oriented knowledgebased system for distribution transformer design. IEEE Transactions on Magnetics 10, 2332–2337. DOI: 10.1109/tmag.2008.2001483

Holland, J. H., 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press 1.

Hui, L., Li, H., Bei, H., Shunchang, Y., 2001. Application research based on improved genetic algorithm for optimum design of power transformers. In: ICEMS’2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No. 01EX501). Vol. 1. IEEE, pp. 242–245.

Hurley, W. G., Wolfle, W. H., Breslin, J. G., 1998. Optimized transformer design: Inclusive of high-frequency effects. IEEE Transactions on Power Electronics 4, 651–659. DOI: 10.1109/63.704133

Khatri, A., Hasmat, M., Rahi, O. P., 2012. Optimal design of power transformer using genetic algorithm. International Conference on Communication Systems and Network Technologies 1. DOI: 10.1109/csnt.2012.180

Kulkarni, S. V., Khaparde, S., 2004. Transformer engineering: design and practice. Crc Press, New York.

Nims, J., Smith, R., El-Keib, A., 1996. Application of a genetic algorithm to power transformer design. Electric machines and power Systems 24 (6), 669–680. DOI: 10.1080/07313569608955702

Olivares-Galvan, J. C., Leon, F. D., Georgilakis, P. S., Escarela-Perez, R., 2010. Selection of copper against aluminium windings for distribution transformers. IET Electric Power Applications 6, 474–485. DOI: 10.1049/iet-epa.2009.0297

Pham, T. H., Salon, S. J., Hoole, S. R. H., 1996. Shape optimization of windings for minimum losses. IEEE Transactions on Magnetics 5, 4287–4289. DOI: 10.1109/20.538845

Poloujadoff, M., Findlay, R. D., 1986. A procedure for illustrating the effect of variation of parameters on optimal transformer design. IEEE Transactions on Power Systems 4, 202–205.

Rubaai, A., 1994. Computer aided instruction of power transformer design in the undergraduate power engineering class. IEEE Transactions on Power Systems 9, 1174–1181. DOI: 10.1109/59.336081

Salkoski, R., Chorbev, I., 2012. Design optimization of distribution transformers based on differential evolution algorithms. In: 4th ICT Innovations 2012 Web Proceedings of the International Conference in Ohrid, Macedonia. Citeseer, pp. 35–44.

Sawhney, A., Chakrabarti, A., 2010. Course in electrical machine design. Dhanpat Rai.

Subramanian, S., Padma, S., 2011. Optimization of transformer design using bacterial foraging algorithm. International Journal of Computer Applications 19 (3), 52–57.

Vecchio, R. D., Poulin, B., Feeney, M. F., Feghali, P. T., Shah, D. M., Ahuja, R., Dillipkumar, M., 2001. Transformer design principles: with applications to core-form power transformers. CRC press.

Zhang, S., Hu, Q., Wang, X., Zhu, Z., 2009. Application of chaos genetic algorithm to transformer optimal design. In: 2009 International Workshop on Chaos-Fractals Theories and Applications. IEEE, pp. 108–111.

Published
2020-01-05
How to Cite
Hernández-Romero, N., Ortíz-Licona , A., Seck Tuoh-Mora, J. C., Lagos-Eulogio, P., Medina Marín, J., & Rosas-Ortíz, G. (2020). Design of the Active Part of a Power Transformer Using Genetic Algorithms for the minimization of losses. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 7(14), 52-58. https://doi.org/10.29057/icbi.v7i14.4424

Most read articles by the same author(s)

1 2 > >>