The consumption of legumes and its effect on the prevalence of metabolic syndrome

Keywords: Legumes, metabolic syndrome, dietary fiber, starch, polyphenols, lectins, protease inhibitors

Abstract

Legumes are a group of seeds of the most relevant botanical family due to their nutritional content and the bioavailability of some bioactive compounds. A bibliographic review was carried out in the Pubmed, Scielo and Medline databases, which included articles between 2016 and 2022, under the key terms "legumes", "metabolic syndrome", "dietary fiber", "starch", "lectins" and "protease inhibitors". Studies that concluded a beneficial association between legume consumption and metabolic syndrome were included. Among the results, the consumption of legumes stands out, providing different bioactive compounds that provide benefits for the prevention of metabolic syndrome such as body weight reduction, increased satiety, glycemic control, blood pressure regulation, activation of signaling pathways and apoptosis. As a conclusion of this review, it is highlighted that there is a positive relationship between the consumption of legumes and the prevention and/or treatment of the metabolic syndrome, but that more studies are required in the human part, as well as in the thermal treatments to avoid the elimination of the compound. bioactive.

Downloads

Download data is not yet available.

References

Clemente A, Delgado-Andrade C, Olías R, Jiménez-López JC. Aspectos de las legumbres nutricionales y beneficiosas para la salud humana. Arbor. 2016; 192(779): a313.

De Filippo G. Obesidad y síndrome metabólico. EMC-Pediatr. 2021; 56(1): 1-7.

Bovolini A, García J, Andrade MA, Duarte JA. Metabolic syndrome pathophysiology and predisposing factors. Int J Sports Med. 2021; 42(03): 199–214.

Duranti M. Grain legume proteins and nutraceutical properties. Fitoterapia. 2006; 77(2): 67–82.

Clemente A. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci Technol. 2000; 11(7): 254–62.

Guillon F, Champ MM-J. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr. 2002; 88(S3) :293–306.

Messina V. Nutritional and health benefits of dried beans. Am J Clin Nutr. 2014; 100 Suppl 1(suppl_1): 437S-42S.

Ros G, Periago MJ. Calidad y composición nutritiva de hortalizas, verduras y legumbres. Gil E, de Nutrición T, editores. Tratado de Nutrición (Tomo II: Composición y Calidad Nutritiva de los Alimentos). 2005; 229–63.

SR11-SR-28: USDA ARS . Usda.gov [citado diciembre de 2021]. Disponible en: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/sr11-sr28/.

Olmedilla A, Ferré R, Asensio C, Martín M. Papel de las leguminosas en la alimentación actual. Elsevier. 2010; 14(2): 72–6.

Ganesa K, Xu B. Lentejas ricas en polifenoles y sus efectos promotores de la salud. Rev Internaciona de Ciencias Moleculares. 2017; 18.

Sotelo A, Argote RM, Cornejo L, Escalona S, Ramos M, Nava A, et al. Medición de fibra dietética y almidón resistente: reto para alumnos del Laboratorio de Desarrollo Experimental de Alimentos (LabDEA). Educ quím. 2008; 19(1): 42–9.

Mamilla K., Mishra, V. (2017). Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT, 75, 51-58.

Aguayo-Rojas J, Rochín-Medina J, Mora-Rochín S, Navarro-Cortez R, Tovar-Jimenez X, Quiñones-Reyes G, et al. Contenido de compuestos fenólicos y capacidad antioxidante de variedades de frijol sembradas en el estado de Zacatecas. Acta Univ. 2021; 31: 1–13.

Casas Z, Reyes E, Vega, N. Lectinas con dominio de leguminosa: características estructurales y utilidad como agentes insectistáticos e insecticidas. Chilean Journal of Agricultural and Animal Science. 2016; 32(2): 157-169

Omelkhoje S, Auruna M, Bamgbose A. Effect of cooking time on some nutrient and antinutriente compnents of bambaragroundnut seeds. Animal Science Journal. 2009; 80: 52–6

Dietary reference intakes: Proposed definition of dietary fiber. Washington, D.C.: National Academies Press; 2001.

Aparicio-Fernández X, Espinosa L. XVIII Encuentro Participación de la Mujer en la Ciencia. El consumo de leguminosas y sus efectos sobre la salud. 2021; 1–5.

García Pacheco Y, Cabrera Mercado D, Ballestas Santos JA, Campo Arrieta MJ. Efecto de diferentes tratamientos térmicos sobre las propiedades tecfuncionales de la harina de fríjol blanco (Phaseolus lunatus L.) y la determinación de su potencial uso agroalimentario. INGE CUC. 2019; 15(2): 132–42.

García-Montalvo IA, Méndez Díaz SY, Aguirre Guzmán N, Sánchez Medina MA, Matías Pérez D, Pérez Campos E. Incremento en el consumo de fibra dietética complementario al tratamiento del síndrome metabólico. Nutr Hosp. 2018; 35(3): 582–7.

Reverri EJ, Randolph JM, Kappagoda CT, Park E, Edirisinghe I, Burton-Freeman BM. Assessing beans as a source of intrinsic fiber on satiety in men and women with metabolic syndrome. Appetite. 2017; 118: 75–81.

Schwingshackl L, Hoffmann G, Lampousi A-M, Knüppel S, Iqbal K, Schwedhelm C, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol. 2017; 32(5) :363–75.

Ruiz Esparza Cisneros J, Vasconcelos-Ulloa JJ, González-Mendoza D, Beltrán-González G, Díaz-Molina R. Efecto de una intervención dietética con un producto alimenticio a base de leguminosas sobre los niveles de malondialdehído, índice HOMA y perfil de lípidos. Endocrinología, Diabetes y Nutrición. 2020; 67(4): 235–44.

Lambert J, Parnell J, Tunnicliffe J, Han J, Sturzenegger T, Reimer R. Consuming yellow pea fiber reduces voluntary energy intake and body fat in overweight/obese adults in a 12-week randomized controlled trial. Clinical Nutrition . 2016:1-8.

Wang B, Yu H, He Y, Wen L, Gu J, Wang X, et al. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota. Food Funct. 2021;12(17): 7923–37.

Bernal L. Una visión de la degradación del almidón. Rev Del Centro de Inv. 2006; 7(25).

Silva, L. Estudio de la digestibilidad de carbohidratos y capacidad antioxidante de leguminosas de mayor consumo en México. [Tesis doctoral]. 2018; Morelos: Instituto Politécnico Nacional. Recuperado a partir de: https://tesis.ipn.mx/bitstream/handle/123456789/4152/silva_cristobal_lorena.pdf?sequence=1&isAllowed=y#:~:text=El%20contenido%20de%20almid%C3%B3n%20en,intestino%20delgado%20de%20individuos%20sanos.

Villarroel P, Gómez C, Vera C, Torres J. Almidón resistente: Características tecnológicas e intereses fisiológicos. Rev Chil Nutr. 2018; 45(3): 271–8.

Ramdath DD, Liu Q, Donner E, Hawke A, Kalinga D, Winberg J, et al. Investigating the relationship between lentil carbohydrate fractions and in vivo postprandial blood glucose response by use of the natural variation in starch fractions among 20 lentil varieties. Food Funct. 2017; 8(10): 3783–91.

Moravek D, Duncan AM, VanderSluis LB, Turkstra SJ, Rogers EJ, Wilson JM, et al. Carbohydrate replacement of rice or potato with lentils reduces the postprandial glycemic response in healthy adults in an acute, randomized, crossover trial. J Nutr. 2018; 148(4): 535–41.

Johnston AJ, Mollard RC, Dandeneau D, MacKay DS, Ames N, Curran J, et al. Acute effects of extruded pea fractions on glycemic response, insulin, appetite, and food intake in healthy young adults, results of a double-blind, randomized crossover trial. Appl Physiol Nutr Metab. 2021; 46(9): 1126–32.

Johnston A, Mollard R, Dandeneau D, Mackay D, Ames N, Curran J, et al. Acute effects of extruded pulse snacks on glycemic response, insulin, appetite, and food intake in healthy young adults in a double blind, randomized, crossover trial. Appl Physiol Nutr Metab. 2021; 46(7): 704–10.

Song X, Dong H, Zang Z, Wu W, Zhu W, Zhang H, et al. Kudzu resistant starch: An effective regulator of type 2 diabetes mellitus. Oxid Med Cell Longev. 2021:1–15.

Wang Q, Zheng Y, Zhuang W, Lu X, Luo X, Zheng B. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch. Food Chem. 2018; 264: 427–34.

Papakonstantinou E, Orfanakos N, Farajian P, Kapetanakou AE, Makariti IP, Grivokostopoulos N, et al. Short-term effects of a low glycemic index carob-containing snack on energy intake, satiety, and glycemic response in normal-weight, healthy adults: Results from two randomized trials. Nutrition. 2017; 42: 12–9.

Clark SL, Ramdath DD, King BV, O’Connor KE, Aliani M, Hawke A, et al. Food type and lentil variety affect satiety responses but not food intake in healthy adults when lentils are substituted for commonly consumed carbohydrates. J Nutr. 2019; 149(7): 1180–8.

Valencia-Aviles E, Ignacio-Figueroa I, Sosa Martinez E, Bartolome-Camacho M, Martinez-Flores E, Garcia-Perez M. Polifenoles: propiedades antioxidantes y toxicológicas. Rev Fac Cien Quim. 2017; 16: 15–29.

Lozada-Salcedo E, Nuñez-Torres O, Rosero-Peña M, Aragadvay-Yungan R. Effects physiopathological of secondary compounds in monogastric feeding. J Selva Andina Anim Sci. 2017; 4(1): 82–92.

Niño-Medina G, Muy-Rangel D, Garza-Juarez A, Vazquez-Rodriguez J, Mendez-Zamora G, Urias-Orona V. Composición nutricional, compuestos fenólicos y capacidad antioxidante de cascarilla de garbanzo. Arch Lat Nutr. 2017; 67(1): 68–73.

Rincon-Silva N, Rincon J, Acosta J. Inhibición de la α-glucosidasa mediante flavonoides de origen natural como vía de control en el desarrollo de diabetes mellitus. Biociencias. 2019; 14(2): 129–48.

Hernández P, Pérez E, Martínez L, Ortiz B, Martínez G. Las lectinas vegetales como modelo de estudio de las interacciones proteína-carbohidrato. REB. 2005; 24(1): 201–28.

Pusztai A, Bardocz S. Biological effects of plant lectins on the gastrointestinal trac: metabolic consequences and applications. Trend Glycosci Glycotechnol. 1996; 8: 149–65.

Ferriz-Martínez R, García-García K, Torres-Arteaga I, Rodriguez-Mendez AJ, Guerrero-Carrillo M de J, Moreno-Celis U, et al. Tolerability assessment of a lectin fraction from Tepary bean seeds (Phaseolus acutifolius) orally administered to rats. Toxicol Rep. 2015; 2: 63–9.

Moreno-Celis U, López-Martínez J, Blanco-Labra A, Cervantes-Jimenez R, Estrada-Martínez L, García-Pascali A, et al. Phaseolus acutifolius Lectin Fractions Exhibit Apoptotic Effects on Colon Cancer: Preclinical Studies Using Dimethilhydrazine or Azoxi-Methane as Cancer Induction Agents. Molecules. 1670; 22.

Lagarda-Diaz I, Guzman-Partida A, Vazquez-Moreno L. Legume Lectins: Proteins with Diverse Applications. Int J Mol Sci. 1242; 18.

Bhutia S, Panda P, Sinha N, Praharaj P, Bhol C, Panigrahi D, et al. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy dependent cell death. Pharmacological Research. 2019; 144: 8–18.

Muller-Esterel W, Brandt U, Anderka O, Kleb S, Ridinger K, Plenikowski M. Biologia: Fundamentos para Medicina y Ciencias de la Vida. Barcelona; 2008.

Panzeri D, Guzzetti L, Sacco G, Tedeschi G, Nonnis S, Airoldi C, et al. Effectiveness of Vigna Unguiculata seed extracts in preventing colorectal cancer. 2020; 11: 5853–65.

Published
2022-12-05
How to Cite
Quintero-Fernández , M. G., Alanís-García, E., Ortega-Ariza, J. A., & Ramírez-Moreno, E. (2022). The consumption of legumes and its effect on the prevalence of metabolic syndrome. Educación Y Salud Boletín Científico Instituto De Ciencias De La Salud Universidad Autónoma Del Estado De Hidalgo, 11(21), 139-149. https://doi.org/10.29057/icsa.v11i21.9664

Most read articles by the same author(s)

1 2 3 > >>